References
- R. Asadi, H. Abdollahi, M. Gharabaghi, Z. Boroumand, Effective
removal of Zn(II) ions from aqueous solution by the magnetic
MnFe2O4 and CoFe2O42 spinel ferrite nanoparticles with focuses
on synthesis, characterization, adsorption, and desorption,
Adv. Powder. Technol., 31 (2020) 1480–1489.
- K.S. Obayomi, M. Auta, Development of microporous
activated Aloji clay for adsorption of lead(II) ions from
aqueous solution, Heliyon, 5 (2019) e02799, doi: 10.1016/j.heliyon.2019.e02799.
- V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for
removal of heavy metals from water: a review, J. Environ.
Manage., 232 (2019) 803–817.
- H. Es-Sahbany, M. Berradi, S. Nkhili, R. Hsissou, M. Allaoui,
M. Loutfi, D. Bassir, M. Belfaquir, M.S. El Youbi, Removal of
heavy metals (nickel) contained in wastewater-models by
the adsorption technique on natural clay, Mater. Today Proc.,
13 (2019) 866–875.
- P.N. Obasi, B.B. Akudinobi, Potential health risk and levels
of heavy metals in water resources of lead–zinc mining
communities of Abakaliki, southeast Nigeria, Appl. Water Sci.,
10 (2020) 184,
doi: 10.1007/s13201-020-01233-z.
- S. Ibrahim, M.A. El-Liethy, K.Z. Elwakeel, M.A.E.-G. Hasan,
A.M. Al Zanaty, M.M. Kamel, Role of identified bacterial
consortium in treatment of Quhafa Wastewater Treatment Plant
influent in Fayuom, Egypt, Environ. Monit. Assess., 192 (2020)
1–10.
- G. Pandey, S. Madhuri, Heavy metals causing toxicity in
animals and fishes, Res. J. Anim. Vet. Fish. Sci., 2 (2014) 17–23.
- H.S. Ibrahim, M.A. Ibrahim, F.A. Samhan, Distribution and
bacterial bioavailability of selected metals in sediments of
Ismailia canal, Egypt, J. Hazard. Mater., 168 (2009) 1012–1016.
- M.K. Uddin, A review on the adsorption of heavy metals
by clay minerals, with special focus on the past decade,
Chem. Eng. J., 308 (2017) 438–462.
- S. Mnasri-Ghnimi, N. Frini-Srasra, Removal of heavy metals
from aqueous solutions by adsorption using single and mixed
pillared clays, Appl. Clay Sci., 179 (2019) 105151, doi: 10.1016/j.clay.2019.105151.
- Y. Yadav, R. Gothalwal, R.K. Tenguriya, Management of heavy
metal pollution by using bacterial biomass, Int. J. Biotechnol.
Trends Technol., 8 (2018) 15–27.
- S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar,
S.S. Fayaed, N.S. Mohd, L.S. Hin, A. El-Shafie, Review on heavy
metal adsorption processes by carbon nanotubes, J. Cleaner
Prod., 230 (2019) 783–793.
- D.K. Yadav, S. Srivastava, Carbon nanotubes as adsorbent
to remove heavy metal ion (Mn+7) in wastewater treatment,
Mater. Today Proc., 4 (2017) 4089–4094.
- B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay,
V.K. Gupta, S. Harikaranahalli Puttaiah, N. Marzban, Heavy
metal adsorption using PAMAM/CNT nanocomposite from
aqueous solution in batch and continuous fixed bed systems,
Chem. Eng. J., 346 (2018) 258–270.
- B. Verma, C. Balomajumder, Surface modification of onedimensional
carbon nanotubes: a review for the management
of heavy metals in wastewater, Environ. Technol. Innovation,
17 (2020) 100596, doi: 10.1016/j.eti.2019.100596.
- E. Deliyanni, G. Kyzas, K. Triantafyllidis, K. Matis, Activated
carbons for the removal of heavy metal ions: a systematic
review of recent literature focused on lead and arsenic ions,
Open Chem., 13 (2015) 699–708.
- M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of
heavy metal ions from aqueous solutions by activated carbon
prepared from apricot stone, Bioresour. Technol., 96 (2005)
1518–1521.
- V. Nejadshafiee, M.R. Islami, Adsorption capacity of heavy
metal ions using sultone-modified magnetic activated carbon
as a bio-adsorbent, Mater. Sci. Eng. C, 101 (2019) 42–52.
- S.-F. Lo, S.-Y. Wang, M.-J. Tsai, L.-D. Lin, Adsorption capacity
and removal efficiency of heavy metal ions by Moso and Ma
bamboo activated carbons, Chem. Eng. Res. Des., 90 (2012)
1397–1406.
- L.Z. Lee, M.A.A. Zaini, S.H. Tang, Porous Nanomaterials for
Heavy Metal Removal, L. Martínez, O. Kharissova, B. Kharisov,
Eds., Handbook of Ecomaterials, Springer, Cham, 2019.
doi: 10.1007/978-3-319-68255-6_27
- L. Yao, X. Hou, S. Hu, J. Wang, M. Li, C. Su, M.O. Tade, Z. Shao,
X. Liu, Green synthesis of mesoporous ZnFe2O4/C composite
microspheres as superior anode materials for lithium-ion
batteries, J. Power Sources, 258 (2014) 305–313.
- G. Boix, J. Troyano, L. Garzón-Tovar, C. Camur, N. Bermejo,
A. Yazdi, J. Piella, N.G. Bastus, V.F. Puntes, I. Imaz, MOF beads
containing inorganic nanoparticles for the simultaneous
removal of multiple heavy metals from water, ACS Appl. Mater.
Interfaces, 12 (2020) 10554–10562.
- P.Z. Ray, H.J. Shipley, Inorganic nano-adsorbents for the
removal of heavy metals and arsenic: a review, RSC Adv.,
5 (2015) 29885–29907.
- L. Giraldo, A. Erto, J.C. Moreno-Piraján, Magnetite nanoparticles
for removal of heavy metals from aqueous solutions:
synthesis and characterization, Adsorption, 19 (2013) 465–474.
- G.F. Lee, Role of Hydrous Metal Oxides in the Transport of
Heavy Metals in the Environment, in: Heavy Metals in the
Aquatic Environment, Pergamon, Oxford, 1975, pp. 137–147.
- I. Ghiloufi, J.E. Ghoul, A. Modwi, L.E. Mir, Ga-doped ZnO for
adsorption of heavy metals from aqueous solution, Mater. Sci.
Semicond. Process., 42 (2016) 102–106.
- Y. Kikuchi, Q. Qian, M. Machida, H. Tatsumoto, Effect of ZnO
loading to activated carbon on Pb(II) adsorption from aqueous
solution, Carbon, 44 (2006) 195–202.
- B.C. Güney, Y. Arslan, Removal of Cu(II) by biopolymerclay
nanocomposite adsorbent, React. Kinet. Mech. Catal.,
136 (2023) 433–448.
- V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for
removal of heavy metals from water: a review, J. Environ.
Manage., 232 (2019) 803–817.
- S. Das, A. Samanta, G. Gangopadhyay, S. Jana, Clay-based
nanocomposites as recyclable adsorbent toward Hg(II) capture:
experimental and theoretical understanding, ACS Omega,
3 (2018) 6283–6292.
- M. Darder, M. Colilla, E. Ruiz-Hitzky, Chitosan–clay
nanocomposites: application as electrochemical sensors,
Appl. Clay Sci., 28 (2005) 199–208.
- B.O. Otunola, O.O. Ololade, A review on the application of
clay minerals as heavy metal adsorbents for remediation
purposes, Environ. Technol. Innovation, 18 (2020) 100692,
doi: 10.1016/j.eti.2020.100692.
- G. Yuvaraja, C. Prasad, Y. Vijaya, M.V. Subbaiah, Application
of ZnO nanorods as an adsorbent material for the removal
of As(III) from aqueous solution: kinetics, isotherms and
thermodynamic studies, Int. J. Ind. Chem., 9 (2018) 17–25.
- R. Arora, Adsorption of heavy metals–a review, Mater. Today
Proc., 18 (2019) 4745–4750.
- S. Wadhawan, A. Jain, J. Nayyar, S.K. Mehta, Role of nanomaterials
as adsorbents in heavy metal ion removal from
wastewater: a review, J. Water Process Eng., 33 (2020) 101038,
doi: 10.1016/j.jwpe.2019.101038.
- I.S. Fernando, K.A. Sanjeewa, S.-Y. Kim, J.-S. Lee, Y.-J. Jeon,
Reduction of heavy metal (Pb2+) biosorption in zebrafish
model using alginic acid purified from Ecklonia cava and two
of its synthetic derivatives, Int. J. Biol. Macromol., 106 (2018)
330–337.
- M.R. Hadiani, K. Khosravi-Darani, N. Rahimifard,
Optimization of As(III) and As(V) removal by Saccharomyces
cerevisiae biomass for biosorption of critical levels in the food
and water resources, J. Environ. Chem. Eng., 7 (2019) 102949,
doi: 10.1016/j.jece.2019.102949.
- D. Chen, Z. Kang, H. Hirahara, S. Aisawa, W. Li, Adsorption
behaviors of deposition-targeted metallic ions onto thiolcontaining
silane modified liquid crystal polymer surfaces,
Appl. Surf. Sci., 479 (2019) 368–374.
- B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, H. Chu, Biochar as a
low-cost adsorbent for aqueous heavy metal removal: a review,
J. Anal. Appl. Pyrolysis, 155 (2021) 105081, doi: 10.1016/j.jaap.2021.105081.
- A. Gabelman, Adsorption basics: part 1, Chem. Eng. Prog.,
113 (2017) 48–53.
- X.-F. Yan, X.-R. Fan, Q. Wang, Y. Shen, An adsorption isotherm
model for adsorption performance of silver-loaded activated
carbon, Therm. Sci., 21 (2017) 1645–1649.
- M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and
interpretation of adsorption isotherm models: a review,
J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
- H. Swenson, N.P. Stadie, Langmuir’s theory of adsorption: a
centennial review, Langmuir, 35 (2019) 5409–5426.
- N. Priyantha, L. Lim, M.K. Dahri, D.T.B. Tennakoon, Dragon
fruit skin as a potential low-cost biosorbent for the removal
of manganese(II) ions, J. Appl. Sci. Environ. Sanit., 8 (2013)
179–188.
- M. Temkin, Kinetics of ammonia synthesis on promoted iron
catalysts, Acta Physiochim. URSS, 12 (1940) 327–356.
- M.H. Jnr, A.I. Spiff, Equilibrium sorption study of Al3+, Co2+
and Ag+ in aqueous solutions by fluted pumpkin (Telfairia
occidentalis HOOK f) waste biomass, Acta Chim. Slov., 52 (2005)
174–181.
- A.V. Hill, The possible effects of the aggregation of the
molecules of hemoglobin on its dissociation curves, J. Physiol.,
40 (1910) IV–VII.
- K. Vijayaraghavan, T. Padmesh, K. Palanivelu, M. Velan,
Biosorption of nickel(II) ions onto Sargassum wightii: application
of two-parameter and three-parameter isotherm models,
J. Hazard. Mater., 133 (2006) 304–308.
- W.A. Stirk, J. van Staden, Some physical factors affecting
adsorption of heavy metals from solution by dried brown
seaweed material, S. Afr. J. Bot., 67 (2001) 615–619.
- A.R.A. Usman, Y. Kuzyakov, K. Stahr, Effect of clay minerals
on extractability of heavy metals and sewage sludge
mineralization in soil, Chem. Ecol., 20 (2004) 123–135.
- A.V. AjayKumar, N.A. Darwish, N. Hilal, Study of various
parameters in the biosorption of heavy metals on activated
sludge, World Appl. Sci. J., 5 (2009) 32–40.
- M. Roghani, S.A.A. Nakhli, M. Aghajani, M.H. Rostami,
S.M. Borghei, Adsorption and oxidation study on arsenite
removal from aqueous solutions by polyaniline/polyvinyl
alcohol composite, J. Water Process Eng., 14 (2016) 101–107.
- L. Radovic, I. Silva, J. Ume, J. Menendez, C.L.Y. Leon, A. Scaroni,
An experimental and theoretical study of the adsorption of
aromatics possessing electron-withdrawing and electrondonating
functional groups by chemically modified activated
carbons, Carbon, 35 (1997) 1339–1348.
- D. Park, Y.-S. Yun, J.M. Park, The past, present, and future
trends of biosorption, Biotechnol. Bioprocess Eng., 15 (2010)
86–102.
- Y. Arai, D.L. Sparks, ATR–FTIR spectroscopic investigation on
phosphate adsorption mechanisms at the ferrihydrite–water
interface, J. Colloid Interface Sci., 241 (2001) 317–326.
- T. Ertli, A. Marton, R. Földényi, Effect of pH and the role
of organic matter in the adsorption of isoproturon on soils,
Chemosphere, 57 (2004) 771–779.
- M.-q. Jiang, X.-y. Jin, X.-Q. Lu, Z.-l. Chen, Adsorption of
Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay,
Desalination, 252 (2010) 33–39.
- H. Es-Sahbany, M. El Hachimi, R. Hsissou, M. Belfaquir,
K. Es-Sahbany, S. Nkhili, M. Loutfi, M. Elyoubi, Adsorption of
heavy metal (cadmium) in synthetic wastewater by the natural
clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima –
Morocco Region), Mater. Today Proc., 45 (2021) 7299–7305.
- B. Southichak, K. Nakano, M. Nomura, N. Chiba, O. Nishimura,
Control parameters influencing the adsorption of heavy metals
by protonated reed biomass, J. Water Environ. Technol.,
43 (2007) 159–167.
- D. Ko, J.S. Lee, H.A. Patel, M.H. Jakobsen, Y. Hwang, C.T. Yavuz,
H.C.B. Hansen, H.R. Andersen, Selective removal of heavy
metal ions by disulfide linked polymer networks, J. Hazard.
Mater., 332 (2017) 140–148.
- K. Zhang, H. Li, X. Xu, H. Yu, Synthesis of reduced graphene
oxide/NiO nanocomposites for the removal of Cr(VI) from
aqueous water by adsorption, Microporous Mesoporous Mater.,
255 (2018) 7–14.
- S. Senthilkumaar, P. Kalaamani, C. Subburaam, Liquid phase
adsorption of crystal violet onto activated carbons derived
from male flowers of coconut tree, J. Hazard. Mater., 136 (2006)
800–808.
- B. Nandi, A. Goswami, M. Purkait, Removal of cationic dyes
from aqueous solutions by kaolin: kinetic and equilibrium
studies, Appl. Clay Sci., 42 (2009) 583–590.
- M.B. Desta, Batch sorption experiments: Langmuir and
Freundlich isotherm studies for the adsorption of textile
metal ions onto teff straw (Eragrostis tef) agricultural waste,
J. Thermodyn., 2013 (2013) 375830, doi: 10.1155/2013/375830.
- B. Yu, Y. Zhang, A. Shukla, S.S. Shukla, K.L. Dorris, The
removal of heavy metal from aqueous solutions by sawdust
adsorption—removal of copper, J. Hazard. Mater., 80 (2000)
33–42.
- Z.A. Ghazi, A.M. Khattak, R. Iqbal, R. Ahmad, A.A. Khan,
M. Usman, F. Nawaz, W. Ali, Z. Felegari, S.U. Jan, Adsorptive
removal of Cd2+ from aqueous solutions by a highly stable
covalent triazine-based framework, New J. Chem., 42 (2018)
10234–10242.
- W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, X. Peng, J. Li,
H. Ge, X. Wang, Efficient removal of Cr(VI) by magnetically
separable CoFe2O4/activated carbon composite, J. Alloys
Compd., 678 (2016) 179–184.
- S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani,
A.K. Mohammed, D.T. Shuaib, Potential of using kaolin
as a natural adsorbent for the removal of pollutants from
tannery wastewater, Heliyon, 5 (2019) e02923, doi: 10.1016/j.heliyon.2019.e02923.
- T. Karthikeyan, S. Rajgopal, L.R. Miranda, Chromium(VI)
adsorption from aqueous solution by Hevea Brasilinesis
sawdust activated carbon, J. Hazard. Mater., 124 (2005) 192–199.
- S.N. Farhan, A.A. Khadom, Biosorption of heavy metals from
aqueous solutions by Saccharomyces cerevisiae, Int. J. Ind. Chem.,
6 (2015) 119–130.
- V. Manirethan, R.M. Balakrishnan, Batch and continuous studies
on the removal of heavy metals using biosynthesised melanin
impregnated activated carbon, Environ. Technol. Innovation,
20 (2020) 101085, doi: 10.1016/j.eti.2020.101085.
- B.R. Müller, Effect of particle size and surface area on the
adsorption of albumin-bonded bilirubin on activated carbon,
Carbon, 48 (2010) 3607–3615.
- H.A. Alhashimi, C.B. Aktas, Life cycle environmental and
economic performance of biochar compared with activated
carbon: a meta-analysis, Resources, Resour. Conserv. Recycl.,
118 (2017) 13–26.
- D. Mohan, C.U. Pittman Jr., M. Bricka, F. Smith, B. Yancey,
J. Mohammad, P.H. Steele, M.F. Alexandre-Franco, V. Gómez-Serrano, H. Gong, Sorption of arsenic, cadmium, and lead by
chars produced from fast pyrolysis of wood and bark during
bio-oil production, J. Colloid Interface Sci., 310 (2007) 57–73.
- X.-j. Tong, J.-y. Li, J.-h. Yuan, R.-k. Xu, Adsorption of Cu(II)
by biochars generated from three crop straws, Chem. Eng. J.,
172 (2011) 828–834.
- X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Removal of
Cu, Zn, and Cd from aqueous solutions by the dairy manurederived
biochar, Environ. Sci. Pollut. Res., 20 (2013) 358–368.
- J. Mdoe, Agricultural waste as raw materials for the
production of activated carbon: can Tanzania venture into this
business?, Huria: J. Open Univ. Tanzania, 16 (2014) 89–103.
- J. Saleem, U.B. Shahid, M. Hijab, H. Mackey, G. McKay, Production
and applications of activated carbons as adsorbents
from olive stones, Biomass Convers. Biorefin., 9 (2019) 775–802.
- H. Liu, J. Zhang, H.H. Ngo, W. Guo, H. Wu, Z. Guo, C. Cheng,
C. Zhang, Effect on physical and chemical characteristics of
activated carbon on adsorption of trimethoprim: mechanisms
study, RSC Adv., 5 (2015) 85187–85195.
- M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals
removal using activated carbon, silica and silica activated
carbon composite, Energy Procedia, 50 (2014) 113–120.
- M. Hami, M.A.I. Al-Hashimi, M. Al-Doori, Effect of activated
carbon on BOD and COD removal in a dissolved air flotation unit
treating refinery wastewater, Desalination, 216 (2007) 116–122.
- J. Dias, M. Alvim-Ferraz, M. Almeida, J. Rivera-Utrilla,
M. Sánchez-Polo, Waste materials for activated carbon
preparation and its use in aqueous-phase treatment: a review,
J. Environ. Manage., 85 (2008) 833–846.
- J. Ndi Nsami, J. Ketcha Mbadcam, The adsorption efficiency of
chemically prepared activated carbon from cola nut shells by
on methylene blue, J. Chem., 2013 (2013) 1–7.
- K. Dai, F. Wang, W. Jiang, Y. Chen, J. Mao, J. Bao, Magnetic
carbon microspheres as a reusable adsorbent for sulfonamide
removal from water, Nanoscale Res. Lett., 12 (2017) 528,
doi: 10.1186/s11671-017-2295-2.
- R. Shahrokhi-Shahraki, C. Benally, M.G. El-Din, J. Park, High
efficiency removal of heavy metals using tire-derived activated
carbon vs commercial activated carbon: insights into the
adsorption mechanisms, Chemosphere, 264 (2021) 128455,
doi: 10.1016/j.chemosphere.2020.128455.
- Y. Yuan, Z. An, R. Zhang, X. Wei, B. Lai, Efficiencies and
mechanisms of heavy metals adsorption on waste leather-derived
high-nitrogen activated carbon, J. Cleaner Prod.,
293 (2021) 126215, doi: 10.1016/j.jclepro.2021.126215.
- S.M. Kharrazi, N. Mirghaffari, M.M. Dastgerdi, M. Soleimani,
A novel post-modification of powdered activated carbon
prepared from lignocellulosic waste through thermal tension
treatment to enhance the porosity and heavy metals adsorption,
J. Powder Technol., 366 (2020) 358–368.
- M. Shahrashoub, S. Bakhtiari, The efficiency of activated
carbon/magnetite nanoparticles composites in copper removal:
industrial waste recovery, green synthesis, characterization,
and adsorption-desorption studies, Microporous Mesoporous
Mater., 311 (2021) 110692, doi: 10.1016/j.micromeso.2020.110692.
- S.I. Moussa, M.M.S. Ali, R.R. Sheha, The performance of
activated carbon/NiFe2O4 magnetic composite to retain heavy
metal ions from aqueous solution, Chin. J. Chem. Eng., 29 (2021)
135–145.
- Z.M. Yunus, A. Al-Gheethi, N. Othman, R. Hamdan, N.N. Ruslan,
Removal of heavy metals from mining effluents in tile and
electroplating industries using honeydew peel activated carbon:
a microstructure and techno-economic analysis, J. Cleaner Prod.,
251 (2020) 119738, doi: 10.1016/j.jclepro.2019.119738.
- Ihsanullah, F.A. Al-Khaldi, B. Abu-Sharkh, A.M. Abulkibash,
M.I. Qureshi, T. Laoui, M.A. Atieh, Effect of acid modification
on adsorption of hexavalent chromium (Cr(VI)) from
aqueous solution by activated carbon and carbon nanotubes,
Desalination, 57 (2016) 7232–7244.
- S.S. Ghasemi, M. Hadavifar, B. Maleki, E. Mohammadnia,
Adsorption of mercury ions from synthetic aqueous solution
using polydopamine decorated SWCNTs, J. Water Process Eng.,
32 (2019) 100965, doi: 10.1016/j.jwpe.2019.100965.
- A. Aliyu, Synthesis, electron microscopy properties and
adsorption studies of zinc(II) ions (Zn2+) onto as-prepared
carbon nanotubes (CNTs) using Box–Behnken design (BBD),
Sci. Afr., 3 (2019) e00069, doi: 10.1016/j.sciaf.2019.e00069.
- Ihsanullah, F.A. Al-Khaldi, B. Abusharkh, M. Khaled,
M.A. Atieh, M.S. Nasser, T. Laoui, T.A. Saleh, S. Agarwal,
I. Tyagi, V.K. Gupta, Adsorptive removal of cadmium(II)
ions from liquid phase using acid modified carbon-based
adsorbents, J. Mol. Liq., 204 (2015) 255–263.
- P.H. Chen, C.-F. Hsu, D.D.-W. Tsai, Y.-M. Lu, W.-J. Huang,
Adsorption of mercury from water by modified
multi-walled
carbon nanotubes: adsorption behaviour and interference resistance
by coexisting anions, Environ. Technol., 35 (2014) 1935–1944.
- M.A. Ganzoury, C. Chidiac, J. Kurtz, C.-F. de Lannoy, CNTsorbents
for heavy metals: electrochemical regeneration and
closed-loop recycling, J. Hazard. Mater., 393 (2020) 122432,
doi: 10.1016/j.jhazmat.2020.122432.
- W. Zhan, L. Gao, X. Fu, S.H. Siyal, G. Sui, X. Yang, Green
synthesis of amino-functionalized carbon nanotube-graphene
hybrid aerogels for high performance heavy metal ions removal,
Appl. Surf. Sci. Adv., 467–468 (2019) 1122–1133.
- T.C. Egbosiuba, A.S. Abdulkareem, J.O. Tijani, J.I. Ani,
V. Krikstolaityte, M. Srinivasan, A. Veksha, G. Lisak, Taguchi
optimization design of diameter-controlled synthesis of multiwalled
carbon nanotubes for the adsorption of Pb(II) and Ni(II)
from chemical industry wastewater, Chemosphere, 266 (2021)
128937, doi: 10.1016/j.chemosphere.2020.128937.
- M. Taghizadeh, S. Hassanpour, Selective adsorption of
Cr(VI) ions from aqueous solutions using a Cr(VI)-imprinted
polymer supported by magnetic multiwall carbon nanotubes,
Polymer, 132 (2017) 1–11.
- N.M. Bandaru, N. Reta, H. Dalal, A.V. Ellis, J. Shapter,
N.H. Voelcker, Enhanced adsorption of mercury ions on thiol
derivatized single wall carbon nanotubes, J. Hazard. Mater.,
261 (2013) 534–541.
- J. He, H. Shang, X. Zhang, X. Sun, Synthesis and application
of ion imprinting polymer coated magnetic multi-walled
carbon nanotubes for selective adsorption of nickel ion,
Appl. Surf. Sci., 428 (2018) 110–117.
- Q. Li, J. Yu, F. Zhou, X. Jiang, Synthesis and characterization
of dithiocarbamate carbon nanotubes for the removal of
heavy metal ions from aqueous solutions, Colloids Surf., A,
482 (2015) 306–314.
- Ş.S. Bayazit, İ. İnci, Adsorption of Pb(II) ions from aqueous
solutions by carbon nanotubes oxidized different methods,
J. Ind. Eng. Chem., 19 (2013) 2064–2071.
- S. Thangavel, G. Venugopal, Understanding the adsorption
property of graphene-oxide with different degrees of
oxidation levels, Powder Technol., 257 (2014) 141–148.
- V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim,
K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of
graphene: covalent and non-covalent approaches, derivatives
and applications, Chem. Rev., 112 (2012) 6156–6214.
- W. Peng, H. Li, Y. Liu, S. Song, Adsorption of methylene
blue on graphene oxide prepared from amorphous graphite:
effects of pH and foreign ions, J. Mol. Liq., 221 (2016) 82–87.
- C. Santhosh, P. Kollu, S. Felix, V. Velmurugan, S.K. Jeong,
A.N. Grace, CoFe2O4 and NiFe2O4@graphene adsorbents
for heavy metal ions – kinetic and thermodynamic analysis,
RSC Adv., 5 (2015) 28965–28972.
- R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann,
A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal
ions from aqueous solutions using graphene oxide, J. Chem.
Soc., Dalton Trans., 42 (2013) 5682–5689.
- S.A. Dastgheib, D.A. Rockstraw, A model for the adsorption
of single metal ion solutes in aqueous solution onto activated
carbon produced from pecan shells, Carbon, 40 (2002)
1843–1851.
- A. Gopalakrishnan, R. Krishnan, S. Thangavel, G. Venugopal,
S.-J. Kim, Removal of heavy metal ions from pharma-effluents
using graphene-oxide nanosorbents and study of their
adsorption kinetics, J. Ind. Eng. Chem., 30 (2015) 14–19.
- W. Wu, Y. Yang, H. Zhou, T. Ye, Z. Huang, R. Liu, Y. Kuang,
Highly efficient removal of Cu(II) from aqueous solution
by using graphene oxide, Water Air Soil Pollut., 224 (2013)
1–8.
- C.J. Madadrang, H.Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng,
M. Gorring, M.L. Kasner, S. Hou, Adsorption behavior of
EDTA-graphene oxide for Pb(II) removal, ACS Appl. Mater.
Interfaces, 4 (2012) 1186–1193.
- G. Zhao, X. Ren, X. Gao, X. Tan, J. Li, C. Chen, Y. Huang,
X. Wang, Removal of Pb(II) ions from aqueous solutions
on few-layered graphene oxide nanosheets, J. Chem. Soc.,
Dalton Trans., 40 (2011) 10945–10952.
- W. Peng, H. Li, Y. Liu, S. Song, Comparison of Pb(II) adsorption
onto graphene oxide prepared from natural graphites:
diagramming the Pb(II) adsorption sites, Appl. Surf. Sci.,
364 (2016) 620–627.
- W. Peng, H. Li, Y. Liu, S. Song, A review on heavy metal ions
adsorption from water by graphene oxide and its composites,
J. Mol. Liq., 230 (2017) 496–504.
- C. Bhattacharjee, S. Dutta, V.K. Saxena, A review on biosorptive
removal of dyes and heavy metals from wastewater using
watermelon rind as biosorbent, Environ. Adv., 2 (2020) 100007,
doi: 10.1016/j.envadv.2020.100007.
- A.I. Osman, E.M.A. El-Monaem, A.M. Elgarahy, C.O. Aniagor,
M. Hosny, M. Farghali, E. Rashad, M.I. Ejimofor, E.A. López-Maldonado, I. Ihara, Methods to prepare biosorbents and
magnetic sorbents for water treatment: a review, Environ.
Chem. Lett., 21 (2023) 2337–2398.
- H. Qin, T. Hu, Y. Zhai, N. Lu, J. Aliyeva, The improved methods
of heavy metals removal by biosorbents: a review, Environ.
Pollut., 258 (2020) 113777, doi: 10.1016/j.envpol.2019.113777.
- V. Hernández-Montoya, A. Bonilla-Petriciolet, Lignocellulosic
Precursors Used in the Synthesis of Activated Carbon:
Characterization Techniques and Applications in the
Wastewater Treatment, BoD–Books on Demand, InTechOpen,
2012.
- Y. Chen, B. Wang, J. Xin, P. Sun, D. Wu, Adsorption behavior
and mechanism of Cr(VI) by modified biochar derived from
Enteromorpha prolifera, Ecotoxicol. Environ. Saf., 164 (2018)
440–447.
- P. Kumarathilaka, V. Jayaweera, H. Wijesekara, I. Kottegoda,
S. Rosa, M. Vithanage, Insights into starch coated nanozero
valent iron-graphene composite for Cr(VI) removal from
aqueous medium, J. Nanomater., 2016 (2016) 2813289,
doi: 10.1155/2016/2813289.
- J. Manfrin, A.C. Gonçalves Jr., D. Schwantes, E. Conradi Jr.,
J. Zimmermann, G.L. Ziemer, Development of biochar and
activated carbon from cigarettes wastes and their applications
in Pb2+ adsorption, J. Environ. Chem. Eng., 9 (2021) 104980,
doi: 10.1016/j.jece.2020.104980.
- D. Schwantes, A.C.G. Junior, H.A. Perina, C.R.T. Tarley,
D.C. Dragunski, E.C. Junior, J. Zimmermann, Ecofriendly
biosorbents produced from cassava solid wastes: sustainable
technology for the removal of Cd2+, Pb2+, and Crtotal, Adsorpt.
Sci. Technol., 2022 (2022) 1–18.
- D. Schwantes, A.C. Gonçalves, G.F. Coelho, M.A. Campagnolo,
D.C. Dragunski, C.R.T. Tarley, A.J. Miola, E.A.V. Leismann,
Chemical modifications of cassava peel as adsorbent material
for metals ions from wastewater, J. Chem., 2016 (2016) 3694174,
doi: 10.1155/2016/3694174.
- S. Mukherjee, The Science of Clays, In: Applications in
Industry, Engineering, and Environment, Springer, Dordrecht,
2013.
- G. Varga, The structure of kaolinite and metakaolinite,
Epitoanyag, 59 (2007) 6–9.
- M. Tofighi, R. Rahnemaie, A new surface structural approach
for modeling the charging behavior of kaolinite, Chem. Geol.,
368 (2023) 121691, doi: 10.1016/j.chemgeo.2023.121691.
- P. Chen, H. Li, S. Song, X. Weng, D. He, Y. Zhao, Adsorption
of dodecylamine hydrochloride on graphene oxide in water,
Results Phys., 7 (2017) 2281–2288.
- V. Krupskaya, S. Zakusin, E. Tyupina, O. Dorzhieva,
A. Zhukhlistov, P. Belousov, M. Timofeeva, Experimental
study of montmorillonite structure and transformation of
its properties under treatment with inorganic acid solutions,
Minerals, 7 (2017) 49, doi: 10.3390/min7040049.
- S. Staunton, M. Roubaud, Adsorption of 137Cs on
montmorillonite and illite: effect of charge compensating
cation, ionic strength, concentration of Cs, K and fulvic acid,
Clays Clay Miner., 45 (1997) 251–260.
- P. Na, X. Jia, B. Yuan, Y. Li, J. Na, Y. Chen, L. Wang, Arsenic
adsorption on Ti-pillared montmorillonite, J. Chem. Technol.
Biotechnol., 85 (2010) 708–714.
- N. Ghorbanzadeh, W. Jung, A. Halajnia, A. Lakzian,
A.N. Kabra, B.-H. Jeon, Removal of arsenate and arsenite from
aqueous solution by adsorption on clay minerals, Geosyst.
Eng., 18 (2015) 302–311.
- A. Alshameri, H. He, C. Xin, J. Zhu, W. Xinghu, R. Zhu,
H. Wang, Understanding the role of natural clay minerals
as effective adsorbents and alternative source of rare earth
elements: adsorption operative parameters, Hydrometallurgy,
185 (2019) 149–161.
- N.D. Mu’azu, A. Bukhari, K. Munef, Effect of montmorillonite
content in natural Saudi Arabian clay on its adsorptive
performance for single aqueous uptake of Cu(II) and Ni(II),
J. King Saud Univ. Sci., 32 (2020) 412–422.
- M.R. Abukhadra, B.M. Bakry, A. Adlii, S.M. Yakout,
M.E. El-Zaidy, Facile conversion of kaolinite into clay
nanotubes (KNTs) of enhanced adsorption properties for toxic
heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water, J. Hazard.
Mater., 374 (2019) 296–308.
- P.E. Dim, L.S. Mustapha, M. Termtanun, J.O. Okafor,
Adsorption of chromium(VI) and iron(III) ions onto acidmodified
kaolinite: isotherm, kinetics and thermodynamics
studies, Arabian J. Chem., 14 (2021) 103064, doi: 10.1016/j.arabjc.2021.103064.
- K.G. Bhattacharyya, S.S. Gupta, Adsorption of Fe(III), Co(II)
and Ni(II) on ZrO–kaolinite and ZrO–montmorillonite surfaces
in aqueous medium, Colloids Surf., A, 317 (2008) 71–79.
- A. Sari, M. Tuzen, Cd(II) adsorption from aqueous solution
by raw and modified kaolinite, Appl. Clay Sci., 88–89 (2014)
63–72.
- E.I. Unuabonah, K.O. Adebowale, B.I. Olu-Owolabi, L.Z. Yang,
L.X. Kong, Adsorption of Pb(II) and Cd(II) from aqueous
solutions onto sodium tetraborate-modified kaolinite clay:
equilibrium and thermodynamic studies, Hydrometallurgy,
93 (2008) 1–9.
- Y. Chu, M.A. Khan, M. Xia, W. Lei, F. Wang, S. Zhu, X. Yan,
Synthesis and micro-mechanistic studies of histidine modified
montmorillonite for lead(II) and copper(II) adsorption from
wastewater, Chem. Eng. Res. Des., 157 (2020) 142–152.
- Y. Chen, S. Wang, Y. Li, Y. Liu, Y. Chen, Y. Wu, J. Zhang, H. Li,
Z. Peng, R. Xu, Z. Zeng, Adsorption of Pb(II) by tourmalinemontmorillonite
composite in aqueous phase, J. Colloid
Interface Sci., 575 (2020) 367–376.
- K. Tohdee, L. Kaewsichan, Asadullah, Enhancement of
adsorption efficiency of heavy metal Cu(II) and Zn(II) onto
cationic surfactant modified bentonite, J. Environ. Chem. Eng.,
6 (2018) 2821–2828.
- S. Andini, R. Cioffi, F. Montagnaro, F. Pisciotta, L. Santoro,
Simultaneous adsorption of chlorophenol and heavy metal
ions on organophilic bentonite, Appl. Clay Sci., 31 (2006)
126–133.
- D. Kurnosov, A. Burakov, I. Burakova, Development of a
bentonite clay/carbon nanotubes composite for liquid-phase
adsorption, Mater. Today Proc., 11 (2019) 398–403.
- S. Kakaei, E.S. Khameneh, F. Rezazadeh, M.H. Hosseini, Heavy
metal removing by modified bentonite and study of catalytic
activity, J. Mol. Struct., 1199 (2020) 126989, doi: 10.1016/j.molstruc.2019.126989.
- R.R. Pawar, Lalhmunsiama, P.G. Ingole, S.M. Lee, Use of
activated bentonite-alginate composite beads for efficient
removal of toxic Cu2+ and Pb2+ ions from aquatic environment,
Int. J. Biol. Macromol., 164 (2020) 3145–3154.
- M.M. Abdel-Mottaleb, A. Khalil, T.A. Osman, A. Khattab,
Removal of hexavalent chromium by electrospun PAN/GO
decorated ZnO, J. Mech. Behav. Biomed. Mater., 98 (2019)
205–212.
- M. Niu, G. Li, L. Cao, X. Wang, W. Wang, Preparation of
sulphate aluminate cement amended bentonite and its use in
heavy metal adsorption, J. Cleaner Prod., 256 (2020) 120700,
doi: 10.1016/j.jclepro.2020.120700.
- N. Kataria, V.K. Garg, Optimization of Pb(II) and Cd(II)
adsorption onto ZnO nanoflowers using central composite
design: isotherms and kinetics modelling, J. Mol. Liq., 271
(2018) 228–239.
- A. Modwi, L. Khezami, K. Taha, O.K. Al-Duaij, A. Houas,
Fast and high efficiency adsorption of Pb(II) ions by Cu/ZnO
composite, Mater. Lett., 195 (2017) 41–44.
- I. Mironyuk, I. Mykytyn, H. Vasylyeva, K. Savka, Sodium-modified
mesoporous TiO2: Sol-gel synthesis, characterization
and adsorption activity toward heavy metal cations, J. Mol.
Liq., 316 (2020) 113840, doi: 10.1016/j.molliq.2020.113840.
- Y. Fu, X. Liu, G. Chen, Adsorption of heavy metal sewage on
nano-materials such as titanate/TiO2 added lignin, Results
Phys., 12 (2019) 405–411.
- W. Gan, X. Shang, X.-H. Li, J. Zhang, X. Fu, Achieving high
adsorption capacity and ultrafast removal of methylene blue
and Pb2+ by graphene-like TiO2@C, Colloids Surf., A, 561 (2019)
218–225.
- H. Yousefzadeh, A.A. Salarian, H. Sid Kalal, Study of Pb(II)
adsorption from aqueous solutions by TiO2 functionalized
with hydroxide ethyl aniline (PHEA/n-TiO2), J. Mol. Liq.,
263 (2018) 294–302.
- A.T. Le, S.-Y. Pung, S. Sreekantan, A. Matsuda, D.P. Huynh,
Mechanisms of removal of heavy metal ions by ZnO particles,
Heliyon, 5 (2019) e01440, doi: 10.1016/j.heliyon.2019.e01440.
- S. Mustapha, J.O. Tijani, M.M. Ndamitso, S.A. Abdulkareem,
D.T. Shuaib, A.K. Mohammed, A. Sumaila, The role of kaolin
and kaolin/ZnO nanoadsorbents in adsorption studies for
tannery wastewater treatment, Sci. Rep., 10 (2020) 13068,
doi: 10.1038/s41598-020-69808-z.
- I. Gammoudi, L. Blanc, F. Moroté, C. Grauby-Heywang,
C. Boissière, R. Kalfat, D. Rebière, T. Cohen-Bouhacina,
C. Dejous, High sensitive mesoporous TiO2-coated love
wave device for heavy metal detection, Biosens. Bioelectron.,
57 (2014) 162–170.
- S. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from
aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles,
Chem. Eng. Commun., 200 (2013) 448–470.
- A. Maleki, B. Hayati, F. Najafi, F. Gharibi, S.W. Joo, Heavy
metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: preparation, characterization and
adsorption studies, J. Mol. Liq., 224 (2016) 95–104.
- H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He,
An overview on limitations of TiO2-based particles for
photocatalytic degradation of organic pollutants and the
corresponding countermeasures, Water Res., 79 (2015)
128–146.
- A.R. Vazquez-Olmos, M. Abatal, R.Y. Sato-Berru, G.K. Pedraza-Basulto, V. Garcia-Vazquez, A. Sainz-Vidal, R. Perez-Bañuelos,
A. Quiroz, Mechanosynthesis of MFe2O4 (M = Co, Ni, and Zn)
magnetic nanoparticles for Pb removal from aqueous solution,
J. Nanomater., 2016 (2016) 9182024, doi: 10.1155/2016/9182024.
- X.-J. Liu, H.-Y. Zeng, S. Xu, C.-R. Chen, Z.-q. Zhang, J.-Z. Du,
Metal oxides as dual-functional adsorbents/catalysts for Cu2+/Cr(VI) adsorption and methyl orange oxidation catalysis,
J. Taiwan Inst. Chem. Eng., 60 (2016) 414–422.
- M. Sharma, M. Poddar, Y. Gupta, S. Nigam, D.K. Avasthi,
R. Adelung, R. Abolhassani, J. Fiutowski, M. Joshi, Y.K. Mishra,
Solar light assisted degradation of dyes and adsorption of
heavy metal ions from water by CuO–ZnO tetrapodal hybrid
nanocomposite, Mater. Today Chem., 17 (2020) 100336,
doi: 10.1016/j.mtchem.2020.100336.
- J. Xiao, R. Hu, G. Chen, B. Xing, Facile synthesis of
multifunctional bone biochar composites decorated with
Fe/Mn oxide micro-nanoparticles: physicochemical properties,
heavy metals sorption behavior and mechanism, J. Hazard.
Mater., 399 (2020) 123067, doi: 10.1016/j.jhazmat.2020.123067.
- G. Qi, H. Ren, H. Fan, Y. Liu, Preparation of CoFe2O4
nanoparticles based on high-gravity technology and
application for the removal of lead, Chem. Eng. Res. Des.,
147 (2019) 520–528.
- D. Wu, Y. Wang, Y. Li, Q. Wei, L. Hu, T. Yan, R. Feng, L. Yan,
B. Du, Phosphorylated chitosan/CoFe2O4 composite for the
efficient removal of Pb(II) and Cd(II) from aqueous solution:
adsorption performance and mechanism studies, J. Mol. Liq.,
277 (2019) 181–188.
- G. Zhou, Y. Wang, R. Zhou, C. Wang, Y. Jin, J. Qiu, C. Hua,
Y. Cao, Synthesis of amino-functionalized bentonite/CoFe2O4@
MnO2 magnetic recoverable nanoparticles for aqueous Cd2+
removal, Sci. Total Environ., 682 (2019) 505–513.
- D.C. Culita, C.M. Simonescu, M. Dragne, N. Stanica,
C. Munteanu, S. Preda, O. Oprea, Effect of surfactant
concentration on textural, morphological and magnetic
properties of CoFe2O4 nanoparticles and evaluation of their
adsorptive capacity for Pb(II) ions, Ceram. Int., 41 (2015)
13553–13560.
- Y. Xiao, H. Liang, W. Chen, Z. Wang, Synthesis and adsorption
behavior of chitosan-coated MnFe2O4 nanoparticles for
trace heavy metal ions removal, Appl. Surf. Sci., 285 (2013)
498–504.
- M.S. Podder, C.B. Majumder, Bacteria immobilization on neem
leaves/MnFe2O4 composite surface for removal of As(III) and
As(V) from wastewater, Arabian J. Chem., 12 (2019) 3263–3288.
- J. Ma, Y. Zeng, M. Sun, M. Zhang, W. Zheng, C. Zhang,
Q. Wang, Y. Xiao, S. Zhang, A superparamagnetic ZnFe2O4@
NH2-SiO2@PMDI@dithizone microspheres as an effective
selective adsorbent for Pb2+ from wastewater, J. Environ.
Chem. Eng., 7 (2019) 102874, doi: 10.1016/j.jece.2018.102874.
- S. Kuai, Z. Zhang, Z. Nan, Synthesis of Ce3+ doped ZnFe2O4
self-assembled clusters and adsorption of chromium(VI),
J. Hazard. Mater., 250 (2013) 229–237.
- Y.M. Desalegn, D.M. Andoshe, T.D. Desissa, Composite of
bentonite/CoFe2O4/hydroxyapatite for adsorption of Pb(II),
Mater. Express, 7 (2020) 115501, doi: 10.1088/2053-1591/abc71f.
- B. Eyvazi, A. Jamshidi-Zanjani, A.K. Darban, Synthesis of
nano-magnetic MnFe2O4 to remove Cr(III) and Cr(VI) from
aqueous solution: a comprehensive study, Environ. Pollut.,
265 (2020) 113685, doi: 10.1016/j.envpol.2019.113685.
- I. Ahmad, F. Ali, F. Rahim, Clay-based nanocomposites and
their environmental applications, Nanosci. Nanotechnol. Lett.,
2 (2018) 166–190.
- S. Hokkanen, A. Bhatnagar, V. Srivastava, V. Suorsa,
M. Sillanpaa, Removal of Cd2+, Ni2+ and PO43– from aqueous
solution by hydroxyapatite-bentonite clay-nanocellulose
composite, Int. J. Biol. Macromol., 118 (2018) 903–912.