References

  1. R. Asadi, H. Abdollahi, M. Gharabaghi, Z. Boroumand, Effective removal of Zn(II) ions from aqueous solution by the magnetic MnFe2O4 and CoFe2O42 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption, Adv. Powder. Technol., 31 (2020) 1480–1489.
  2. K.S. Obayomi, M. Auta, Development of microporous activated Aloji clay for adsorption of lead(II) ions from aqueous solution, Heliyon, 5 (2019) e02799, doi: 10.1016/j.heliyon.2019.e02799.
  3. V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for removal of heavy metals from water: a review, J. Environ. Manage., 232 (2019) 803–817.
  4. H. Es-Sahbany, M. Berradi, S. Nkhili, R. Hsissou, M. Allaoui, M. Loutfi, D. Bassir, M. Belfaquir, M.S. El Youbi, Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay, Mater. Today Proc., 13 (2019) 866–875.
  5. P.N. Obasi, B.B. Akudinobi, Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria, Appl. Water Sci., 10 (2020) 184,
    doi: 10.1007/s13201-020-01233-z.
  6. S. Ibrahim, M.A. El-Liethy, K.Z. Elwakeel, M.A.E.-G. Hasan, A.M. Al Zanaty, M.M. Kamel, Role of identified bacterial consortium in treatment of Quhafa Wastewater Treatment Plant influent in Fayuom, Egypt, Environ. Monit. Assess., 192 (2020) 1–10.
  7. G. Pandey, S. Madhuri, Heavy metals causing toxicity in animals and fishes, Res. J. Anim. Vet. Fish. Sci., 2 (2014) 17–23.
  8. H.S. Ibrahim, M.A. Ibrahim, F.A. Samhan, Distribution and bacterial bioavailability of selected metals in sediments of Ismailia canal, Egypt, J. Hazard. Mater., 168 (2009) 1012–1016.
  9. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2017) 438–462.
  10. S. Mnasri-Ghnimi, N. Frini-Srasra, Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, Appl. Clay Sci., 179 (2019) 105151, doi: 10.1016/j.clay.2019.105151.
  11. Y. Yadav, R. Gothalwal, R.K. Tenguriya, Management of heavy metal pollution by using bacterial biomass, Int. J. Biotechnol. Trends Technol., 8 (2018) 15–27.
  12. S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.S. Hin, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotubes, J. Cleaner Prod., 230 (2019) 783–793.
  13. D.K. Yadav, S. Srivastava, Carbon nanotubes as adsorbent to remove heavy metal ion (Mn+7) in wastewater treatment, Mater. Today Proc., 4 (2017) 4089–4094.
  14. B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay, V.K. Gupta, S. Harikaranahalli Puttaiah, N. Marzban, Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems, Chem. Eng. J., 346 (2018) 258–270.
  15. B. Verma, C. Balomajumder, Surface modification of onedimensional carbon nanotubes: a review for the management of heavy metals in wastewater, Environ. Technol. Innovation, 17 (2020) 100596, doi: 10.1016/j.eti.2019.100596.
  16. E. Deliyanni, G. Kyzas, K. Triantafyllidis, K. Matis, Activated carbons for the removal of heavy metal ions: a systematic review of recent literature focused on lead and arsenic ions, Open Chem., 13 (2015) 699–708.
  17. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol., 96 (2005) 1518–1521.
  18. V. Nejadshafiee, M.R. Islami, Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent, Mater. Sci. Eng. C, 101 (2019) 42–52.
  19. S.-F. Lo, S.-Y. Wang, M.-J. Tsai, L.-D. Lin, Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons, Chem. Eng. Res. Des., 90 (2012) 1397–1406.
  20. L.Z. Lee, M.A.A. Zaini, S.H. Tang, Porous Nanomaterials for Heavy Metal Removal, L. Martínez, O. Kharissova, B. Kharisov, Eds., Handbook of Ecomaterials, Springer, Cham, 2019. doi: 10.1007/978-3-319-68255-6_27
  21. L. Yao, X. Hou, S. Hu, J. Wang, M. Li, C. Su, M.O. Tade, Z. Shao, X. Liu, Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries, J. Power Sources, 258 (2014) 305–313.
  22. G. Boix, J. Troyano, L. Garzón-Tovar, C. Camur, N. Bermejo, A. Yazdi, J. Piella, N.G. Bastus, V.F. Puntes, I. Imaz, MOF beads containing inorganic nanoparticles for the simultaneous removal of multiple heavy metals from water, ACS Appl. Mater. Interfaces, 12 (2020) 10554–10562.
  23. P.Z. Ray, H.J. Shipley, Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review, RSC Adv., 5 (2015) 29885–29907.
  24. L. Giraldo, A. Erto, J.C. Moreno-Piraján, Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization, Adsorption, 19 (2013) 465–474.
  25. G.F. Lee, Role of Hydrous Metal Oxides in the Transport of Heavy Metals in the Environment, in: Heavy Metals in the Aquatic Environment, Pergamon, Oxford, 1975, pp. 137–147.
  26. I. Ghiloufi, J.E. Ghoul, A. Modwi, L.E. Mir, Ga-doped ZnO for adsorption of heavy metals from aqueous solution, Mater. Sci. Semicond. Process., 42 (2016) 102–106.
  27. Y. Kikuchi, Q. Qian, M. Machida, H. Tatsumoto, Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution, Carbon, 44 (2006) 195–202.
  28. B.C. Güney, Y. Arslan, Removal of Cu(II) by biopolymerclay nanocomposite adsorbent, React. Kinet. Mech. Catal., 136 (2023) 433–448.
  29. V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for removal of heavy metals from water: a review, J. Environ. Manage., 232 (2019) 803–817.
  30. S. Das, A. Samanta, G. Gangopadhyay, S. Jana, Clay-based nanocomposites as recyclable adsorbent toward Hg(II) capture: experimental and theoretical understanding, ACS Omega, 3 (2018) 6283–6292.
  31. M. Darder, M. Colilla, E. Ruiz-Hitzky, Chitosan–clay nanocomposites: application as electrochemical sensors, Appl. Clay Sci., 28 (2005) 199–208.
  32. B.O. Otunola, O.O. Ololade, A review on the application of clay minerals as heavy metal adsorbents for remediation purposes, Environ. Technol. Innovation, 18 (2020) 100692, doi: 10.1016/j.eti.2020.100692.
  33. G. Yuvaraja, C. Prasad, Y. Vijaya, M.V. Subbaiah, Application of ZnO nanorods as an adsorbent material for the removal of As(III) from aqueous solution: kinetics, isotherms and thermodynamic studies, Int. J. Ind. Chem., 9 (2018) 17–25.
  34. R. Arora, Adsorption of heavy metals–a review, Mater. Today Proc., 18 (2019) 4745–4750.
  35. S. Wadhawan, A. Jain, J. Nayyar, S.K. Mehta, Role of nanomaterials as adsorbents in heavy metal ion removal from wastewater: a review, J. Water Process Eng., 33 (2020) 101038, doi: 10.1016/j.jwpe.2019.101038.
  36. I.S. Fernando, K.A. Sanjeewa, S.-Y. Kim, J.-S. Lee, Y.-J. Jeon, Reduction of heavy metal (Pb2+) biosorption in zebrafish model using alginic acid purified from Ecklonia cava and two of its synthetic derivatives, Int. J. Biol. Macromol., 106 (2018) 330–337.
  37. M.R. Hadiani, K. Khosravi-Darani, N. Rahimifard, Optimization of As(III) and As(V) removal by Saccharomyces cerevisiae biomass for biosorption of critical levels in the food and water resources, J. Environ. Chem. Eng., 7 (2019) 102949, doi: 10.1016/j.jece.2019.102949.
  38. D. Chen, Z. Kang, H. Hirahara, S. Aisawa, W. Li, Adsorption behaviors of deposition-targeted metallic ions onto thiolcontaining silane modified liquid crystal polymer surfaces, Appl. Surf. Sci., 479 (2019) 368–374.
  39. B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, H. Chu, Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review, J. Anal. Appl. Pyrolysis, 155 (2021) 105081, doi: 10.1016/j.jaap.2021.105081.
  40. A. Gabelman, Adsorption basics: part 1, Chem. Eng. Prog., 113 (2017) 48–53.
  41. X.-F. Yan, X.-R. Fan, Q. Wang, Y. Shen, An adsorption isotherm model for adsorption performance of silver-loaded activated carbon, Therm. Sci., 21 (2017) 1645–1649.
  42. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
  43. H. Swenson, N.P. Stadie, Langmuir’s theory of adsorption: a centennial review, Langmuir, 35 (2019) 5409–5426.
  44. N. Priyantha, L. Lim, M.K. Dahri, D.T.B. Tennakoon, Dragon fruit skin as a potential low-cost biosorbent for the removal of manganese(II) ions, J. Appl. Sci. Environ. Sanit., 8 (2013) 179–188.
  45. M. Temkin, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim. URSS, 12 (1940) 327–356.
  46. M.H. Jnr, A.I. Spiff, Equilibrium sorption study of Al3+, Co2+ and Ag+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK f) waste biomass, Acta Chim. Slov., 52 (2005) 174–181.
  47. A.V. Hill, The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves, J. Physiol., 40 (1910) IV–VII.
  48. K. Vijayaraghavan, T. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models, J. Hazard. Mater., 133 (2006) 304–308.
  49. W.A. Stirk, J. van Staden, Some physical factors affecting adsorption of heavy metals from solution by dried brown seaweed material, S. Afr. J. Bot., 67 (2001) 615–619.
  50. A.R.A. Usman, Y. Kuzyakov, K. Stahr, Effect of clay minerals on extractability of heavy metals and sewage sludge mineralization in soil, Chem. Ecol., 20 (2004) 123–135.
  51. A.V. AjayKumar, N.A. Darwish, N. Hilal, Study of various parameters in the biosorption of heavy metals on activated sludge, World Appl. Sci. J., 5 (2009) 32–40.
  52. M. Roghani, S.A.A. Nakhli, M. Aghajani, M.H. Rostami, S.M. Borghei, Adsorption and oxidation study on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite, J. Water Process Eng., 14 (2016) 101–107.
  53. L. Radovic, I. Silva, J. Ume, J. Menendez, C.L.Y. Leon, A. Scaroni, An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electrondonating functional groups by chemically modified activated carbons, Carbon, 35 (1997) 1339–1348.
  54. D. Park, Y.-S. Yun, J.M. Park, The past, present, and future trends of biosorption, Biotechnol. Bioprocess Eng., 15 (2010) 86–102.
  55. Y. Arai, D.L. Sparks, ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface, J. Colloid Interface Sci., 241 (2001) 317–326.
  56. T. Ertli, A. Marton, R. Földényi, Effect of pH and the role of organic matter in the adsorption of isoproturon on soils, Chemosphere, 57 (2004) 771–779.
  57. M.-q. Jiang, X.-y. Jin, X.-Q. Lu, Z.-l. Chen, Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay, Desalination, 252 (2010) 33–39.
  58. H. Es-Sahbany, M. El Hachimi, R. Hsissou, M. Belfaquir, K. Es-Sahbany, S. Nkhili, M. Loutfi, M. Elyoubi, Adsorption of heavy metal (cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima – Morocco Region), Mater. Today Proc., 45 (2021) 7299–7305.
  59. B. Southichak, K. Nakano, M. Nomura, N. Chiba, O. Nishimura, Control parameters influencing the adsorption of heavy metals by protonated reed biomass, J. Water Environ. Technol., 43 (2007) 159–167.
  60. D. Ko, J.S. Lee, H.A. Patel, M.H. Jakobsen, Y. Hwang, C.T. Yavuz, H.C.B. Hansen, H.R. Andersen, Selective removal of heavy metal ions by disulfide linked polymer networks, J. Hazard. Mater., 332 (2017) 140–148.
  61. K. Zhang, H. Li, X. Xu, H. Yu, Synthesis of reduced graphene oxide/NiO nanocomposites for the removal of Cr(VI) from aqueous water by adsorption, Microporous Mesoporous Mater., 255 (2018) 7–14.
  62. S. Senthilkumaar, P. Kalaamani, C. Subburaam, Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree, J. Hazard. Mater., 136 (2006) 800–808.
  63. B. Nandi, A. Goswami, M. Purkait, Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies, Appl. Clay Sci., 42 (2009) 583–590.
  64. M.B. Desta, Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste, J. Thermodyn., 2013 (2013) 375830, doi: 10.1155/2013/375830.
  65. B. Yu, Y. Zhang, A. Shukla, S.S. Shukla, K.L. Dorris, The removal of heavy metal from aqueous solutions by sawdust adsorption—removal of copper, J. Hazard. Mater., 80 (2000) 33–42.
  66. Z.A. Ghazi, A.M. Khattak, R. Iqbal, R. Ahmad, A.A. Khan, M. Usman, F. Nawaz, W. Ali, Z. Felegari, S.U. Jan, Adsorptive removal of Cd2+ from aqueous solutions by a highly stable covalent triazine-based framework, New J. Chem., 42 (2018) 10234–10242.
  67. W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, X. Peng, J. Li, H. Ge, X. Wang, Efficient removal of Cr(VI) by magnetically separable CoFe2O4/activated carbon composite, J. Alloys Compd., 678 (2016) 179–184.
  68. S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, A.K. Mohammed, D.T. Shuaib, Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater, Heliyon, 5 (2019) e02923, doi: 10.1016/j.heliyon.2019.e02923.
  69. T. Karthikeyan, S. Rajgopal, L.R. Miranda, Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon, J. Hazard. Mater., 124 (2005) 192–199.
  70. S.N. Farhan, A.A. Khadom, Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae, Int. J. Ind. Chem., 6 (2015) 119–130.
  71. V. Manirethan, R.M. Balakrishnan, Batch and continuous studies on the removal of heavy metals using biosynthesised melanin impregnated activated carbon, Environ. Technol. Innovation, 20 (2020) 101085, doi: 10.1016/j.eti.2020.101085.
  72. B.R. Müller, Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon, Carbon, 48 (2010) 3607–3615.
  73. H.A. Alhashimi, C.B. Aktas, Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis, Resources, Resour. Conserv. Recycl., 118 (2017) 13–26.
  74. D. Mohan, C.U. Pittman Jr., M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H. Steele, M.F. Alexandre-Franco, V. Gómez-Serrano, H. Gong, Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production, J. Colloid Interface Sci., 310 (2007) 57–73.
  75. X.-j. Tong, J.-y. Li, J.-h. Yuan, R.-k. Xu, Adsorption of Cu(II) by biochars generated from three crop straws, Chem. Eng. J., 172 (2011) 828–834.
  76. X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, B. Gao, Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manurederived biochar, Environ. Sci. Pollut. Res., 20 (2013) 358–368.
  77. J. Mdoe, Agricultural waste as raw materials for the production of activated carbon: can Tanzania venture into this business?, Huria: J. Open Univ. Tanzania, 16 (2014) 89–103.
  78. J. Saleem, U.B. Shahid, M. Hijab, H. Mackey, G. McKay, Production and applications of activated carbons as adsorbents from olive stones, Biomass Convers. Biorefin., 9 (2019) 775–802.
  79. H. Liu, J. Zhang, H.H. Ngo, W. Guo, H. Wu, Z. Guo, C. Cheng, C. Zhang, Effect on physical and chemical characteristics of activated carbon on adsorption of trimethoprim: mechanisms study, RSC Adv., 5 (2015) 85187–85195.
  80. M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia, 50 (2014) 113–120.
  81. M. Hami, M.A.I. Al-Hashimi, M. Al-Doori, Effect of activated carbon on BOD and COD removal in a dissolved air flotation unit treating refinery wastewater, Desalination, 216 (2007) 116–122.
  82. J. Dias, M. Alvim-Ferraz, M. Almeida, J. Rivera-Utrilla, M. Sánchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review, J. Environ. Manage., 85 (2008) 833–846.
  83. J. Ndi Nsami, J. Ketcha Mbadcam, The adsorption efficiency of chemically prepared activated carbon from cola nut shells by on methylene blue, J. Chem., 2013 (2013) 1–7.
  84. K. Dai, F. Wang, W. Jiang, Y. Chen, J. Mao, J. Bao, Magnetic carbon microspheres as a reusable adsorbent for sulfonamide removal from water, Nanoscale Res. Lett., 12 (2017) 528, doi: 10.1186/s11671-017-2295-2.
  85. R. Shahrokhi-Shahraki, C. Benally, M.G. El-Din, J. Park, High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms, Chemosphere, 264 (2021) 128455, doi: 10.1016/j.chemosphere.2020.128455.
  86. Y. Yuan, Z. An, R. Zhang, X. Wei, B. Lai, Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon, J. Cleaner Prod., 293 (2021) 126215, doi: 10.1016/j.jclepro.2021.126215.
  87. S.M. Kharrazi, N. Mirghaffari, M.M. Dastgerdi, M. Soleimani, A novel post-modification of powdered activated carbon prepared from lignocellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption, J. Powder Technol., 366 (2020) 358–368.
  88. M. Shahrashoub, S. Bakhtiari, The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies, Microporous Mesoporous Mater., 311 (2021) 110692, doi: 10.1016/j.micromeso.2020.110692.
  89. S.I. Moussa, M.M.S. Ali, R.R. Sheha, The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution, Chin. J. Chem. Eng., 29 (2021) 135–145.
  90. Z.M. Yunus, A. Al-Gheethi, N. Othman, R. Hamdan, N.N. Ruslan, Removal of heavy metals from mining effluents in tile and electroplating industries using honeydew peel activated carbon: a microstructure and techno-economic analysis, J. Cleaner Prod., 251 (2020) 119738, doi: 10.1016/j.jclepro.2019.119738.
  91. Ihsanullah, F.A. Al-Khaldi, B. Abu-Sharkh, A.M. Abulkibash, M.I. Qureshi, T. Laoui, M.A. Atieh, Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes, Desalination, 57 (2016) 7232–7244.
  92. S.S. Ghasemi, M. Hadavifar, B. Maleki, E. Mohammadnia, Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs, J. Water Process Eng., 32 (2019) 100965, doi: 10.1016/j.jwpe.2019.100965.
  93. A. Aliyu, Synthesis, electron microscopy properties and adsorption studies of zinc(II) ions (Zn2+) onto as-prepared carbon nanotubes (CNTs) using Box–Behnken design (BBD), Sci. Afr., 3 (2019) e00069, doi: 10.1016/j.sciaf.2019.e00069.
  94. Ihsanullah, F.A. Al-Khaldi, B. Abusharkh, M. Khaled, M.A. Atieh, M.S. Nasser, T. Laoui, T.A. Saleh, S. Agarwal, I. Tyagi, V.K. Gupta, Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents, J. Mol. Liq., 204 (2015) 255–263.
  95. P.H. Chen, C.-F. Hsu, D.D.-W. Tsai, Y.-M. Lu, W.-J. Huang, Adsorption of mercury from water by modified
    multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions, Environ. Technol., 35 (2014) 1935–1944.
  96. M.A. Ganzoury, C. Chidiac, J. Kurtz, C.-F. de Lannoy, CNTsorbents for heavy metals: electrochemical regeneration and closed-loop recycling, J. Hazard. Mater., 393 (2020) 122432, doi: 10.1016/j.jhazmat.2020.122432.
  97. W. Zhan, L. Gao, X. Fu, S.H. Siyal, G. Sui, X. Yang, Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal, Appl. Surf. Sci. Adv., 467–468 (2019) 1122–1133.
  98. T.C. Egbosiuba, A.S. Abdulkareem, J.O. Tijani, J.I. Ani, V. Krikstolaityte, M. Srinivasan, A. Veksha, G. Lisak, Taguchi optimization design of diameter-controlled synthesis of multiwalled carbon nanotubes for the adsorption of Pb(II) and Ni(II) from chemical industry wastewater, Chemosphere, 266 (2021) 128937, doi: 10.1016/j.chemosphere.2020.128937.
  99. M. Taghizadeh, S. Hassanpour, Selective adsorption of Cr(VI) ions from aqueous solutions using a Cr(VI)-imprinted polymer supported by magnetic multiwall carbon nanotubes, Polymer, 132 (2017) 1–11.
  100. N.M. Bandaru, N. Reta, H. Dalal, A.V. Ellis, J. Shapter, N.H. Voelcker, Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes, J. Hazard. Mater., 261 (2013) 534–541.
  101. J. He, H. Shang, X. Zhang, X. Sun, Synthesis and application of ion imprinting polymer coated magnetic multi-walled carbon nanotubes for selective adsorption of nickel ion, Appl. Surf. Sci., 428 (2018) 110–117.
  102. Q. Li, J. Yu, F. Zhou, X. Jiang, Synthesis and characterization of dithiocarbamate carbon nanotubes for the removal of heavy metal ions from aqueous solutions, Colloids Surf., A, 482 (2015) 306–314.
  103. Ş.S. Bayazit, İ. İnci, Adsorption of Pb(II) ions from aqueous solutions by carbon nanotubes oxidized different methods, J. Ind. Eng. Chem., 19 (2013) 2064–2071.
  104. S. Thangavel, G. Venugopal, Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels, Powder Technol., 257 (2014) 141–148.
  105. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev., 112 (2012) 6156–6214.
  106. W. Peng, H. Li, Y. Liu, S. Song, Adsorption of methylene blue on graphene oxide prepared from amorphous graphite: effects of pH and foreign ions, J. Mol. Liq., 221 (2016) 82–87.
  107. C. Santhosh, P. Kollu, S. Felix, V. Velmurugan, S.K. Jeong, A.N. Grace, CoFe2O4 and NiFe2O4@graphene adsorbents for heavy metal ions – kinetic and thermodynamic analysis, RSC Adv., 5 (2015) 28965–28972.
  108. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions from aqueous solutions using graphene oxide, J. Chem. Soc., Dalton Trans., 42 (2013) 5682–5689.
  109. S.A. Dastgheib, D.A. Rockstraw, A model for the adsorption of single metal ion solutes in aqueous solution onto activated carbon produced from pecan shells, Carbon, 40 (2002) 1843–1851.
  110. A. Gopalakrishnan, R. Krishnan, S. Thangavel, G. Venugopal, S.-J. Kim, Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics, J. Ind. Eng. Chem., 30 (2015) 14–19.
  111. W. Wu, Y. Yang, H. Zhou, T. Ye, Z. Huang, R. Liu, Y. Kuang, Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide, Water Air Soil Pollut., 224 (2013) 1–8.
  112. C.J. Madadrang, H.Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner, S. Hou, Adsorption behavior of EDTA-graphene oxide for Pb(II) removal, ACS Appl. Mater. Interfaces, 4 (2012) 1186–1193.
  113. G. Zhao, X. Ren, X. Gao, X. Tan, J. Li, C. Chen, Y. Huang, X. Wang, Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets, J. Chem. Soc., Dalton Trans., 40 (2011) 10945–10952.
  114. W. Peng, H. Li, Y. Liu, S. Song, Comparison of Pb(II) adsorption onto graphene oxide prepared from natural graphites: diagramming the Pb(II) adsorption sites, Appl. Surf. Sci., 364 (2016) 620–627.
  115. W. Peng, H. Li, Y. Liu, S. Song, A review on heavy metal ions adsorption from water by graphene oxide and its composites, J. Mol. Liq., 230 (2017) 496–504.
  116. C. Bhattacharjee, S. Dutta, V.K. Saxena, A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent, Environ. Adv., 2 (2020) 100007, doi: 10.1016/j.envadv.2020.100007.
  117. A.I. Osman, E.M.A. El-Monaem, A.M. Elgarahy, C.O. Aniagor, M. Hosny, M. Farghali, E. Rashad, M.I. Ejimofor, E.A. López-Maldonado, I. Ihara, Methods to prepare biosorbents and magnetic sorbents for water treatment: a review, Environ. Chem. Lett., 21 (2023) 2337–2398.
  118. H. Qin, T. Hu, Y. Zhai, N. Lu, J. Aliyeva, The improved methods of heavy metals removal by biosorbents: a review, Environ. Pollut., 258 (2020) 113777, doi: 10.1016/j.envpol.2019.113777.
  119. V. Hernández-Montoya, A. Bonilla-Petriciolet, Lignocellulosic Precursors Used in the Synthesis of Activated Carbon: Characterization Techniques and Applications in the Wastewater Treatment, BoD–Books on Demand, InTechOpen, 2012.
  120. Y. Chen, B. Wang, J. Xin, P. Sun, D. Wu, Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera, Ecotoxicol. Environ. Saf., 164 (2018) 440–447.
  121. P. Kumarathilaka, V. Jayaweera, H. Wijesekara, I. Kottegoda, S. Rosa, M. Vithanage, Insights into starch coated nanozero valent iron-graphene composite for Cr(VI) removal from aqueous medium, J. Nanomater., 2016 (2016) 2813289, doi: 10.1155/2016/2813289.
  122. J. Manfrin, A.C. Gonçalves Jr., D. Schwantes, E. Conradi Jr., J. Zimmermann, G.L. Ziemer, Development of biochar and activated carbon from cigarettes wastes and their applications in Pb2+ adsorption, J. Environ. Chem. Eng., 9 (2021) 104980, doi: 10.1016/j.jece.2020.104980.
  123. D. Schwantes, A.C.G. Junior, H.A. Perina, C.R.T. Tarley, D.C. Dragunski, E.C. Junior, J. Zimmermann, Ecofriendly biosorbents produced from cassava solid wastes: sustainable technology for the removal of Cd2+, Pb2+, and Crtotal, Adsorpt. Sci. Technol., 2022 (2022) 1–18.
  124. D. Schwantes, A.C. Gonçalves, G.F. Coelho, M.A. Campagnolo, D.C. Dragunski, C.R.T. Tarley, A.J. Miola, E.A.V. Leismann, Chemical modifications of cassava peel as adsorbent material for metals ions from wastewater, J. Chem., 2016 (2016) 3694174, doi: 10.1155/2016/3694174.
  125. S. Mukherjee, The Science of Clays, In: Applications in Industry, Engineering, and Environment, Springer, Dordrecht, 2013.
  126. G. Varga, The structure of kaolinite and metakaolinite, Epitoanyag, 59 (2007) 6–9.
  127. M. Tofighi, R. Rahnemaie, A new surface structural approach for modeling the charging behavior of kaolinite, Chem. Geol., 368 (2023) 121691, doi: 10.1016/j.chemgeo.2023.121691.
  128. P. Chen, H. Li, S. Song, X. Weng, D. He, Y. Zhao, Adsorption of dodecylamine hydrochloride on graphene oxide in water, Results Phys., 7 (2017) 2281–2288.
  129. V. Krupskaya, S. Zakusin, E. Tyupina, O. Dorzhieva, A. Zhukhlistov, P. Belousov, M. Timofeeva, Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions, Minerals, 7 (2017) 49, doi: 10.3390/min7040049.
  130. S. Staunton, M. Roubaud, Adsorption of 137Cs on montmorillonite and illite: effect of charge compensating cation, ionic strength, concentration of Cs, K and fulvic acid, Clays Clay Miner., 45 (1997) 251–260.
  131. P. Na, X. Jia, B. Yuan, Y. Li, J. Na, Y. Chen, L. Wang, Arsenic adsorption on Ti-pillared montmorillonite, J. Chem. Technol. Biotechnol., 85 (2010) 708–714.
  132. N. Ghorbanzadeh, W. Jung, A. Halajnia, A. Lakzian, A.N. Kabra, B.-H. Jeon, Removal of arsenate and arsenite from aqueous solution by adsorption on clay minerals, Geosyst. Eng., 18 (2015) 302–311.
  133. A. Alshameri, H. He, C. Xin, J. Zhu, W. Xinghu, R. Zhu, H. Wang, Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: adsorption operative parameters, Hydrometallurgy, 185 (2019) 149–161.
  134. N.D. Mu’azu, A. Bukhari, K. Munef, Effect of montmorillonite content in natural Saudi Arabian clay on its adsorptive performance for single aqueous uptake of Cu(II) and Ni(II), J. King Saud Univ. Sci., 32 (2020) 412–422.
  135. M.R. Abukhadra, B.M. Bakry, A. Adlii, S.M. Yakout, M.E. El-Zaidy, Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water, J. Hazard. Mater., 374 (2019) 296–308.
  136. P.E. Dim, L.S. Mustapha, M. Termtanun, J.O. Okafor, Adsorption of chromium(VI) and iron(III) ions onto acidmodified kaolinite: isotherm, kinetics and thermodynamics studies, Arabian J. Chem., 14 (2021) 103064, doi: 10.1016/j.arabjc.2021.103064.
  137. K.G. Bhattacharyya, S.S. Gupta, Adsorption of Fe(III), Co(II) and Ni(II) on ZrO–kaolinite and ZrO–montmorillonite surfaces in aqueous medium, Colloids Surf., A, 317 (2008) 71–79.
  138. A. Sari, M. Tuzen, Cd(II) adsorption from aqueous solution by raw and modified kaolinite, Appl. Clay Sci., 88–89 (2014) 63–72.
  139. E.I. Unuabonah, K.O. Adebowale, B.I. Olu-Owolabi, L.Z. Yang, L.X. Kong, Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies, Hydrometallurgy, 93 (2008) 1–9.
  140. Y. Chu, M.A. Khan, M. Xia, W. Lei, F. Wang, S. Zhu, X. Yan, Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead(II) and copper(II) adsorption from wastewater, Chem. Eng. Res. Des., 157 (2020) 142–152.
  141. Y. Chen, S. Wang, Y. Li, Y. Liu, Y. Chen, Y. Wu, J. Zhang, H. Li, Z. Peng, R. Xu, Z. Zeng, Adsorption of Pb(II) by tourmalinemontmorillonite composite in aqueous phase, J. Colloid Interface Sci., 575 (2020) 367–376.
  142. K. Tohdee, L. Kaewsichan, Asadullah, Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite, J. Environ. Chem. Eng., 6 (2018) 2821–2828.
  143. S. Andini, R. Cioffi, F. Montagnaro, F. Pisciotta, L. Santoro, Simultaneous adsorption of chlorophenol and heavy metal ions on organophilic bentonite, Appl. Clay Sci., 31 (2006) 126–133.
  144. D. Kurnosov, A. Burakov, I. Burakova, Development of a bentonite clay/carbon nanotubes composite for liquid-phase adsorption, Mater. Today Proc., 11 (2019) 398–403.
  145. S. Kakaei, E.S. Khameneh, F. Rezazadeh, M.H. Hosseini, Heavy metal removing by modified bentonite and study of catalytic activity, J. Mol. Struct., 1199 (2020) 126989, doi: 10.1016/j.molstruc.2019.126989.
  146. R.R. Pawar, Lalhmunsiama, P.G. Ingole, S.M. Lee, Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment, Int. J. Biol. Macromol., 164 (2020) 3145–3154.
  147. M.M. Abdel-Mottaleb, A. Khalil, T.A. Osman, A. Khattab, Removal of hexavalent chromium by electrospun PAN/GO decorated ZnO, J. Mech. Behav. Biomed. Mater., 98 (2019) 205–212.
  148. M. Niu, G. Li, L. Cao, X. Wang, W. Wang, Preparation of sulphate aluminate cement amended bentonite and its use in heavy metal adsorption, J. Cleaner Prod., 256 (2020) 120700, doi: 10.1016/j.jclepro.2020.120700.
  149. N. Kataria, V.K. Garg, Optimization of Pb(II) and Cd(II) adsorption onto ZnO nanoflowers using central composite design: isotherms and kinetics modelling, J. Mol. Liq., 271 (2018) 228–239.
  150. A. Modwi, L. Khezami, K. Taha, O.K. Al-Duaij, A. Houas, Fast and high efficiency adsorption of Pb(II) ions by Cu/ZnO composite, Mater. Lett., 195 (2017) 41–44.
  151. I. Mironyuk, I. Mykytyn, H. Vasylyeva, K. Savka, Sodium-modified mesoporous TiO2: Sol-gel synthesis, characterization and adsorption activity toward heavy metal cations, J. Mol. Liq., 316 (2020) 113840, doi: 10.1016/j.molliq.2020.113840.
  152. Y. Fu, X. Liu, G. Chen, Adsorption of heavy metal sewage on nano-materials such as titanate/TiO2 added lignin, Results Phys., 12 (2019) 405–411.
  153. W. Gan, X. Shang, X.-H. Li, J. Zhang, X. Fu, Achieving high adsorption capacity and ultrafast removal of methylene blue and Pb2+ by graphene-like TiO2@C, Colloids Surf., A, 561 (2019) 218–225.
  154. H. Yousefzadeh, A.A. Salarian, H. Sid Kalal, Study of Pb(II) adsorption from aqueous solutions by TiO2 functionalized with hydroxide ethyl aniline (PHEA/n-TiO2), J. Mol. Liq., 263 (2018) 294–302.
  155. A.T. Le, S.-Y. Pung, S. Sreekantan, A. Matsuda, D.P. Huynh, Mechanisms of removal of heavy metal ions by ZnO particles, Heliyon, 5 (2019) e01440, doi: 10.1016/j.heliyon.2019.e01440.
  156. S. Mustapha, J.O. Tijani, M.M. Ndamitso, S.A. Abdulkareem, D.T. Shuaib, A.K. Mohammed, A. Sumaila, The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment, Sci. Rep., 10 (2020) 13068, doi: 10.1038/s41598-020-69808-z.
  157. I. Gammoudi, L. Blanc, F. Moroté, C. Grauby-Heywang, C. Boissière, R. Kalfat, D. Rebière, T. Cohen-Bouhacina, C. Dejous, High sensitive mesoporous TiO2-coated love wave device for heavy metal detection, Biosens. Bioelectron., 57 (2014) 162–170.
  158. S. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles, Chem. Eng. Commun., 200 (2013) 448–470.
  159. A. Maleki, B. Hayati, F. Najafi, F. Gharibi, S.W. Joo, Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: preparation, characterization and adsorption studies, J. Mol. Liq., 224 (2016) 95–104.
  160. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Res., 79 (2015) 128–146.
  161. A.R. Vazquez-Olmos, M. Abatal, R.Y. Sato-Berru, G.K. Pedraza-Basulto, V. Garcia-Vazquez, A. Sainz-Vidal, R. Perez-Bañuelos, A. Quiroz, Mechanosynthesis of MFe2O4 (M = Co, Ni, and Zn) magnetic nanoparticles for Pb removal from aqueous solution, J. Nanomater., 2016 (2016) 9182024, doi: 10.1155/2016/9182024.
  162. X.-J. Liu, H.-Y. Zeng, S. Xu, C.-R. Chen, Z.-q. Zhang, J.-Z. Du, Metal oxides as dual-functional adsorbents/catalysts for Cu2+/Cr(VI) adsorption and methyl orange oxidation catalysis, J. Taiwan Inst. Chem. Eng., 60 (2016) 414–422.
  163. M. Sharma, M. Poddar, Y. Gupta, S. Nigam, D.K. Avasthi, R. Adelung, R. Abolhassani, J. Fiutowski, M. Joshi, Y.K. Mishra, Solar light assisted degradation of dyes and adsorption of heavy metal ions from water by CuO–ZnO tetrapodal hybrid nanocomposite, Mater. Today Chem., 17 (2020) 100336, doi: 10.1016/j.mtchem.2020.100336.
  164. J. Xiao, R. Hu, G. Chen, B. Xing, Facile synthesis of multifunctional bone biochar composites decorated with
    Fe/Mn oxide micro-nanoparticles: physicochemical properties, heavy metals sorption behavior and mechanism, J. Hazard. Mater., 399 (2020) 123067, doi: 10.1016/j.jhazmat.2020.123067.
  165. G. Qi, H. Ren, H. Fan, Y. Liu, Preparation of CoFe2O4 nanoparticles based on high-gravity technology and application for the removal of lead, Chem. Eng. Res. Des., 147 (2019) 520–528.
  166. D. Wu, Y. Wang, Y. Li, Q. Wei, L. Hu, T. Yan, R. Feng, L. Yan, B. Du, Phosphorylated chitosan/CoFe2O4 composite for the efficient removal of Pb(II) and Cd(II) from aqueous solution: adsorption performance and mechanism studies, J. Mol. Liq., 277 (2019) 181–188.
  167. G. Zhou, Y. Wang, R. Zhou, C. Wang, Y. Jin, J. Qiu, C. Hua, Y. Cao, Synthesis of amino-functionalized bentonite/CoFe2O4@ MnO2 magnetic recoverable nanoparticles for aqueous Cd2+ removal, Sci. Total Environ., 682 (2019) 505–513.
  168. D.C. Culita, C.M. Simonescu, M. Dragne, N. Stanica, C. Munteanu, S. Preda, O. Oprea, Effect of surfactant concentration on textural, morphological and magnetic properties of CoFe2O4 nanoparticles and evaluation of their adsorptive capacity for Pb(II) ions, Ceram. Int., 41 (2015) 13553–13560.
  169. Y. Xiao, H. Liang, W. Chen, Z. Wang, Synthesis and adsorption behavior of chitosan-coated MnFe2O4 nanoparticles for trace heavy metal ions removal, Appl. Surf. Sci., 285 (2013) 498–504.
  170. M.S. Podder, C.B. Majumder, Bacteria immobilization on neem leaves/MnFe2O4 composite surface for removal of As(III) and As(V) from wastewater, Arabian J. Chem., 12 (2019) 3263–3288.
  171. J. Ma, Y. Zeng, M. Sun, M. Zhang, W. Zheng, C. Zhang, Q. Wang, Y. Xiao, S. Zhang, A superparamagnetic ZnFe2O4@ NH2-SiO2@PMDI@dithizone microspheres as an effective selective adsorbent for Pb2+ from wastewater, J. Environ. Chem. Eng., 7 (2019) 102874, doi: 10.1016/j.jece.2018.102874.
  172. S. Kuai, Z. Zhang, Z. Nan, Synthesis of Ce3+ doped ZnFe2O4 self-assembled clusters and adsorption of chromium(VI), J. Hazard. Mater., 250 (2013) 229–237.
  173. Y.M. Desalegn, D.M. Andoshe, T.D. Desissa, Composite of bentonite/CoFe2O4/hydroxyapatite for adsorption of Pb(II), Mater. Express, 7 (2020) 115501, doi: 10.1088/2053-1591/abc71f.
  174. B. Eyvazi, A. Jamshidi-Zanjani, A.K. Darban, Synthesis of nano-magnetic MnFe2O4 to remove Cr(III) and Cr(VI) from aqueous solution: a comprehensive study, Environ. Pollut., 265 (2020) 113685, doi: 10.1016/j.envpol.2019.113685.
  175. I. Ahmad, F. Ali, F. Rahim, Clay-based nanocomposites and their environmental applications, Nanosci. Nanotechnol. Lett., 2 (2018) 166–190.
  176. S. Hokkanen, A. Bhatnagar, V. Srivastava, V. Suorsa, M. Sillanpaa, Removal of Cd2+, Ni2+ and PO43– from aqueous solution by hydroxyapatite-bentonite clay-nanocellulose composite, Int. J. Biol. Macromol., 118 (2018) 903–912.