References

  1. https://echa.europa.eu/hot-topics (Accessed 13.06.2023).
  2. M. Chrobok, M. Czaplicka, Occurrence and removal of polymeric material markers in water environment: a review, Desal. Water Treat., 186 (2020) 406–417.
  3. https://echa.europa.eu/pl (Endocrine Disruptor Assessment List) (Accessed 13.06.2023).
  4. A.D. LaFleur, K.A. Schug, A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems, Anal. Chim. Acta, 696 (2011) 6–26.
  5. H. Imhof, J. Schmid, R. Niessner, N. Ivleva, C. Laforsch, A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments, Limnol. Oceanogr. Methods, 10 (2012) 524–537.
  6. R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Sci. Adv., 3 (2017) e1700782, doi: 10.1126/sciadv.1700782.
  7. I. Koniecko, M. Staniszewska, L. Falkowska, D. Burska, J. Kielczewska, A. Jasinska, Alkylphenols in surface sediments of the Gulf of Gdansk (Baltic Sea), Water Air Soil Pollut., 225 (2014) 2040,
    doi: 10.1007/s11270-014-2040-8.
  8. M. Staniszewska, L. Falkowska, P. Grabowski, J. Kwasniak, S. Mudrak-Cegiołka, A. Reindl, A. Sokołowski, E. Szumiło, A. Zgrundo, Bisphenol A, 4-tert-octylphenol, and 4-nonylphenol in The Gulf of Gdansk (Southern Baltic), Arch. Environ. Contam. Toxicol., 67 (2014) 335–347.
  9. M. Staniszewska, I. Koniecko, L. Falkowska, E. Krzymyk, Occurrence and distribution of Bisphenol A and alkylphenols in the water of the Gulf of Gdansk (Southern Baltic), Mar. Pollut. Bull., 91 (2015) 372–379.
  10. M. Staniszewska, B. Graca, A. Sokołowski, I. Nehring, A. Wasik, A. Jendzul, Factors determining accumulation of Bisphenol A and alkylphenols at a low trophic level as exemplified by mussels Mytilus trossulus, Environ. Pollut., 220 (2017) 1147–1159.
  11. I. Biskup, A. Mizerska, I. Fecka, Alkylphenols of natural origin – properties and prospects for their use in pharmacy, Borgis - Postępy Fitoterapii, 1 (2015) 37–44 (in Polish).
  12. https://www.sciencedirect.com/topics/medicine-and-dentistry/alkylphenol (Accessed 22.04.2022).
  13. L. Ye, J. Guo, R. Ge, Environmental pollutants and hydroxysteroid dehydrogenases, Vitam. Horm., 94 (2014) 349–390.
  14. A. Szymański, B. Wyrwas, Alkylphenols and Their Ethoxylates – Hazardous Substances With Endocrine Disruption Activity, M.M. Sozański, Ed., Water Supply and Water Quality – Present Issues, Polish Association of Sanitary Engineers and Technicians, Wielkopolska Branch, Poland, 2010.
  15. G. Bolívar-Subirats, M. Cortina-Puig, S. Lacorte, Multiresidue method for the determination of high production volume plastic additives in river waters, Environ. Sci. Pollut. Res., 27 (2020) 41314–41325.
  16. https://www.researchandmarkets.com/reports/5685314/2023-alkylphenol-ethoxylate-market-outlook (Accessed 15.06.2023).
  17. A. Priac, N. Morin-Crini, C. Druart, S. Gavoille, C. Bradu, C. Lagarrigue, G. Torri, P. Winterton, G. Crini, Alkylphenol and alkylphenol polyethoxylates in water and wastewater: a review of options for their elimination, Arabian J. Chem., 10 (2017) 3749–3773.
  18. US EPA, United States Environmental Protection Agency Report: Aquatic Life Ambient Water Quality Criteria B Nonylphenol, 2005. Available at https://www.pca.state.mn.us/ sites/default/files/wq-s6-16.pdf
  19. M. Cantero, S. Rubio, D. Perez-Bendito, Determination of alkylphenols and alkylphenol carboxylates in wastewater and river samples by hemimicelle-based extraction and liquid chromatography–ion trap mass spectrometry, J. Chromatogr. A, 1120 (2006) 260–267.
  20. H.W.B. Reed, Alkylphenols. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Vol. 2, John Wiley & Sons Inc., New York, 1978.
  21. https://pubchem.ncbi.nlm.nih.gov/source/hsdb/5359 (Accessed 15.06.2023).
  22. https://pubchem.ncbi.nlm.nih.gov/ (Accessed 16.06.2023).
  23. G.G. Ying, B. Williams, R. Kookana, Environmental fate of alkylphenols and alkylphenol ethoxylates – a review, Environ. Int., 28 (2002) 215–226.
  24. M. Vincent, J. Sneddon, Nonylphenol: an overview and its determination in oysters and wastewaters and preliminary degradation results from laboratory experiments, Microchem. J., 92 (2009) 112–118.
  25. M. Pernica, P. Poloucká, M. Seifertová, Z. Simek, Determination of alkylphenols in water samples using liquid chromatography–tandem mass spectrometry after precolumn derivatization with dansyl chloride, J. Chromatogr. A, 1417 (2015) 49–56.
  26. C.A. Staples, P.B. Dorn, G.M. Klecka, S.T. O’Block, L.R. Harris, A review of the environmental fate, effects, and exposures of Bisphenol A, Chemosphere, 36 (1998) 2149–2173.
  27. N. Salgueiro-González, S. Muniategui-Lorenzo, P. López-Mahía, D. Prada-Rodríguez, Trends in analytical methodologies for the determination of alkylphenols and Bisphenol A in water samples, Anal. Chim. Acta, 962 (2017) 1–14.
  28. D. Voutsa, P. Hartmann, C. Schaffner, W. Giger, Benzotriazoles, alkylphenols and Bisphenol A in municipal wastewaters and in the Glatt River, Switzerland, Environ. Sci. Pollut. Res., 13 (2006) 333–341.
  29. M. Dudziak, M. Bodzek, Analyzing the content of xenoestrogens in water by sorptive extraction, Ochr. Srodowiska, 31 (2009) 9–14 (in Polish).
  30. A. Belfroid, M. van Velzen, M. van der Horsta, D. Vethaak, Occurrence of Bisphenol A in surface water and uptake in fish: evaluation of field measurements, Chemosphere, 49 (2002) 97–103.
  31. Y.S. Choi, S. Cho, C. Lee, H.M.-D. Luu, J. Guo, Contamination of ultrapure water with Bisphenol A leached from polysulfone ultrafilter, Talanta, 94 (2012) 353–355.
  32. H. Fromme, T. Küchler, T. Otto, K. Pilz, J. Müller, A. Wenzel, Occurrence of phthalates and Bisphenol A and F in the environment, Water Res., 36 (2002) 1429–1438.
  33. J.S. Ra, S.H. Lee, J. Lee, H.Y. Kim, B.J. Lim, S.H. Kim, S.D. Kim, Occurrence of estrogenic chemicals in South Korean surface waters and municipal wastewaters, J. Environ. Monit., 13 (2011) 101–109.
  34. M. Staniszewska, B. Graca, I. Nehring, The fate of bisphenol A, 4-tert-octylphenol and 4-nonylphenol leached from plastic debris into marine water e experimental studies on biodegradation and sorption on suspended particulate matter and nano-TiO2, Chemosphere, 145 (2016) 535–542.
  35. A. Guart, F. Bono-Blay, A. Borrell, S. Lacorte, Migration of plasticizers phthalates, Bisphenol A and alkylphenols from plastic containers and evaluation of risk, Food Addit. Contam., Part A, 28 (2011) 676–685.
  36. X.L. Cao, J. Corriveau, Migration of Bisphenol A from polycarbonate baby and water bottles into water under severe conditions, J. Agric. Food Chem., 56 (2008) 6378–6381.
  37. C. Kubwabo, I. Kosarac, B. Stewart, B.R. Gauthier, K. Lalonde, P.J. Lalonde, Migration of Bisphenol A from plastic baby bottles, baby bottle liners and reusable polycarbonate drinking bottles, Food Addit. Contam., Part A, 26 (2009) 928–937.
  38. A. Goodson, H. Robin, W. Summerfield, I. Cooper, Migration of Bisphenol A from can coatings-effects of damage, storage conditions and heating, Food Addit. Contam., 21 (2004) 1015–1026.
  39. S.-H. Nam, Y.-M. Seo, M.-G. Kim, Bisphenol A migration from polycarbonate baby bottle with repeated use, Chemosphere, 79 (2010) 949–952.
  40. J. Sajiki, J. Yonekubo, Leaching of Bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species, Chemosphere, 51 (2003) 55–62.
  41. J. Sajiki, J. Yonekubo, Leaching of Bisphenol A (BPA) from polycarbonate plastic to water containing amino acids and its degradation by radical oxygen species, Chemosphere, 55 (2004) 861–867.
  42. P. Sun, X. Liu, M. Zhang, Z. Li., C. Cao, H. Shi, Y. Yang, Y. Zhao, Sorption and leaching behaviors between aged MPs and BPA in water: the role of BPA binding modes within plastic matrix, Water Res., 195 (2021) 116956, doi: 10.1016/j.watres.2021.116956.
  43. S. Tisler, J.H. Christensen, Non-target screening for the identification of migrating compounds from reusable plastic bottles into drinking water, J. Hazard. Mater., 429 (2022) 128331, doi: 10.1016/j.jhazmat.2022.128331.
  44. T.J. Suhrhoff, B.M. Scholz-Böttcher, Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics — a lab experiment, Mar. Pollut. Bull., 102 (2016) 84–94.
  45. A.A. Koelmans, E. Besseling, E.M. Foekema, Leaching of plastic additives to marine organisms, Environ. Pollut., 187 (2014) 49–54.
  46. H. Luo, C. Liu, D. He, J. Sun, J. Li, X. Pan, Effects of aging on environmental behavior of plastic additives: migration, leaching, and ecotoxicity, Sci. Total Environ., 849 (2022) 157951, doi: 10.1016/j.scitotenv.2022.157951.
  47. A.R. Hammodat, S. Nassar, M.M. Mortula, M. Shamsuzzaman, Factors affecting the leaching of micro and nanoplastics in the water distribution system, J. Environ. Manage., 345 (2023) 118779, doi: 10.1016/j.jenvman.2023.118779.
  48. O. Chen, A. Allgeier, D. Yin, H. Hollert, Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions, Environ. Int., 130 (2019) 104938, doi: 10.1016/j.envint.2019.104938.
  49. K. Kannan, J.L. Kober, J.S. Khim, K. Szymczyk, J. Falandysz, J.P. Giesy, Polychlorinated biphenyls, polycyclic aromatic hydrocarbons and alkylphenols in sediments from the Odra River and its tributaries, Poland, Toxicol. Environ. Chem., 85 (2003) 51–60.
  50. Z. Xie, S. Lakaschus, R. Ebinghaus, A. Caba, W. Ruck, Atmospheric concentrations and air-sea exchanges of nonylphenol, tertiary octylphenol and nonylphenol monoethoxylate in the North Sea, Environ. Pollut., 142 (2006) 170–180.
  51. X. Peng, Z. Wang, B. Mai, F. Chen, S. Chen, J. Tan, Y. Yu, C. Tang, K. Li, G. Zhang, C. Yang, Temporal trends of nonylphenol and Bisphenol A contamination in the Pearl River Estuary and the adjacent South China Sea recorded by dated sedimentary cores, Sci. Total Environ., 384 (2007) 393–400.
  52. G. Pojana, A. Gomiero, N. Jonkers, A. Marcomini, Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon, Environ. Int., 33 (2007) 929–936.
  53. I. Jiménez-Díaz, O. Ballesteros, A. Zafra-Gómez, G. Crovetto, J.L. Vílchez, A. Navalón, C. Verge, J.A. de Ferrer, New sample treatment for the determination of alkylphenols and alkylphenol ethoxylates in agricultural soils, Chemosphere, 80 (2010) 248–255.
  54. M. Staniszewska, L. Falkowska, Nonylphenol and 4-tertoctylphenol in the Gulf of Gdansk coastal zone, Oceanol. Hydrobiol. Stud., 40 (2011) 49–56.
  55. G.J. Zhou, X.Y. Li, K.M.Y. Leung, Retinoids and oestrogenic endocrine disrupting chemicals in saline sewage treatment plants: removal efficiencies and ecological risks to marine organisms, Environ. Int., 127 (2019) 103–113.
  56. S.B. Gewurtz G. Tardif, M. Power, S.M. Backus, A. Dove, K. Dubé-Roberge, C. Garron, M. King, B. Lalonde, R.J. Letcher, P.A. Martin, T.V. McDaniel, D.J. McGoldrick, M. Pelletier, J. Small, S.N. Smyth, S. Teslic, J. Tessier, Bisphenol A in the Canadian environment: a multimedia analysis, Sci. Total Environ., 755 (2021) 142472, doi: 10.1016/j.scitotenv.2020.142472.
  57. M. Staniszewska, I. Koniecko, L. Falkowska, D. Burska, J. Kiełczewska, The relationship between the black carbon and Bisphenol A in sea and river sediments (Southern Baltic), J. Environ. Sci., 41 (2016) 24–32.
  58. S.M. Rhind, C.E. Kyle, G.T. Telfer, E.I. Duff, A. Smith, Alkyl phenols and diethylhexyl phthalate in tissues of sheep grazing pastures fertilized with sewage sludge or inorganic fertilizer, Environ. Health Perspect., 113 (2005) 447–453.
  59. I.C. Beck, R. Bruhn, J. Gandrass, Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen, Chemosphere, 63 (2006) 1870–1878.
  60. T. Tsuda, K. Suga, E. Kaneda, M. Ohsuga, 4-Nonylphenol, 4-nonylphenol mono- and diethoxylates, and other
    4-alkylphenols in water and shellfish from rivers flowing into Lake Biwa, Bull. Environ. Contam. Toxicol., 68 (2002) 126–131.
  61. A. Arditsoglou, D. Voutsa, Occurrence and partitioning of endocrine-disrupting compounds in the marine environment of Thermaikos Gulf, Northern Aegean Sea, Greece, Mar. Pollut. Bull., 64 (2012) 2443–2452.
  62. D.T. Bennie, C.A, Sullivan, H.B. Lee, T.E. Peart, R.J. Maguire, Occurrence of alkylphenols and alkylphenol mono- and diethoxylates in natural waters of the Laurentian Great Lakes basin and the upper St. Lawrence River, Sci. Total Environ., 193 (1997) 63–75.
  63. Z. Pan, C. Tang, Y. Cao, Y. Xuan, Q. Zhou, Distribution and source apportionment of phenolic EDCs in rivers in the Pearl River Delta, South China, Environ. Sci. Pollut. Res., 30 (2023) 48248–48259.
  64. Z.F. Luo, Y. Tu, H.P. Li, B. Qiu, Y. Liu, Z.G. Yang, Endocrinedisrupting compounds in the Xiangjiang River of China: spatio-temporal distribution, source apportionment, and risk assessment, Ecotoxicol. Environ. Saf., 167 (2019) 476–484.
  65. E. Pignotti, E. Dinelli, Distribution and partition of endocrine disrupting compounds in water and sediment: case study of the Romagna area (North Italy), J. Geochem. Explor., 195 (2018) 66–77.
  66. D.J. Fairbairn, M.E. Karpuzcu, W.A. Arnold, B.L. Barber, E.F. Kaufenberg, W.C. Koskinen, P.J. Novak, P.J. Rice, D.L. Swackhamer, Sources and transport of contaminants of emerging concern: a two-year study of occurrence and spatiotemporal variation in a mixed land use watershed, Sci. Total Environ., 551–552 (2016) 605–613.
  67. A.A. Oketola, T.K. Fagbemigun, Determination of nonylphenol, octylphenol and Bisphenol A in water and sediments of two major rivers in Lagos, Nigeria, J. Environ. Prot., 4 (2013) 38–45.
  68. K.K. Selvaraj, G. Shanmugam, S. Sampath, D.G. Joakim Larsson, B.R. Ramaswamy, GC–MS determination of Bisphenol A and alkylphenol ethoxylates in river water from India and their ecotoxicological risk assessment, Ecotoxicol. Environ. Saf., 99 (2014) 13–20.
  69. L. Wang, Y. Wu, H. Sun, J. Xu, S. Dai, Distribution and dissipation pathways of nonylphenol polyethoxylates in the Yellow River: site investigation and lab-scale studies, Environ. Int., 32 (2006) 907–914.
  70. Z. Zhang, Z. Wu, L. He, The accumulation of alkylphenols in submersed plants in spring in urban lake, China, Chemosphere, 73 (2008) 859–863.
  71. R. Brix, C. Postigo, S. González, M. Villagrasa, A. Navarro, M. Kuster, M.J. Lopez de Alda, D. Barceló, Analysis and occurrence of alkylphenolic compounds and estrogens in a European river basin and an evaluation of their importance as priority pollutants, Anal. Bioanal. Chem., 396 (2010) 1301–1309.
  72. K. Lilja, K. Nordtröm, M. Remberger, L. Kaj, I. Egelrud, E. Junedahal, E. Brorström-Lunden, Report: Screening of Selected Hazardous Substances in the Eastern Baltic Marine Environment Nilu, Swedish Environmental Research Institute, 2009.
  73. A. Oren, Z. Aizenshtat, B. Chefetz, Persistent organic pollutants and sedimentary organic matter properties: a case study in the Kishon River, Israel, Environ. Pollut., 141 (2006) 265–274.
  74. A. Pohl, M. Kostecki, Spatial distribution, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in water and bottom sediments of the anthropogenic lymnic ecosystems, under conditions of diversified anthropopressure, Arch. Environ. Prot., 46 (2020) 104–120.
  75. A. Pohl, M. Kostecki, Characteristics, distribution, sources and ecological risk of persistent organic pollutants (PAHs, PCBs) in the bottom sediments of a potamic ecosystem, in conditions of urban-industrial anthropopressure, Desal. Water Treat., 215 (2021) 80–89.
  76. A. Pohl, M. Bodzek, Polycyclic aromatic hydrocarbons in water and bottom sediments of the non-flow reservoir with recreational use, Desal. Water Treat., 246 (2022) 25–35.
  77. L. Lubecki, G. Kowalewska, Plastic-derived contaminants in sediments from the coastal zone of the southern Baltic Sea, Mar. Pollut. Bull., 146 (2019) 255–262.
  78. G. Crini1, C. Cosentino, C. Bradu, M. Fourmentin, G. Torri, O. Ruzimuradov, I.A. Alaton, M.C. Tomei, J. Derco, M. Barhoumi, H. Prosen, B.N. Malinović, M. Vrabel M.M. Huq, J. Soltan, E. Lichtfouse, N. Morin‑Crini, Innovative technologies to remove alkylphenols from wastewater: a review, Environ. Chem. Lett., 20 (2022) 2597–2628.
  79. C.B. Godiya, B.J. Park, Removal of Bisphenol A from wastewater by physical, chemical and biological remediation techniques. A review, Environ. Chem. Lett., 20 (2022) 1801–1837.
  80. V. Matamoros, V. Salvadó, Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain, J. Environ. Manage., 117 (2013) 96–102.
  81. H. Asakura, T. Matsuto, Experimental study of behaviour of endocrine-disrupting chemicals in leachate treatment process and evaluation of removal efficiency, Waste Manage., 29 (2009) 1852–1859.
  82. M. Boehler, B. Zwickenpflug, J. Hollender, T. Ternes, A. Joss, H. Siegrist, Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon, Water Sci. Technol., 66 (2012) 2115–2121.
  83. L. Hernández-Leal, H. Temmink, G. Zeeman, C.J.N. Buisman, Removal of micropollutants from aerobically treated grey water via ozone and activated carbon, Water Res., 45 (2011) 2887–2896.
  84. G. Liu, S. Zheng, D. Yin, Z. Xu, J. Fan, F. Jiang, Adsorption of aqueous alkylphenol ethoxylate surfactants by mesoporous carbon CMK-3, J. Colloid Interface Sci., 302 (2006) 47–53.
  85. X. Yuan, W. Xing, S.-P. Zhuo, W. Si, X. Gao, Z. Han, Z.-F. Yan, Adsorption of bulky molecules of nonylphenol ethoxylate on ordered mesoporous carbons, J. Colloid Interface Sci., 322 (2008) 558–565.
  86. D. Bonenfant, P. Niquette, M. Mimeault, R. Hausler, Adsorption and recovery of nonylphenol ethoxylate on a crosslinked β-cyclodextrin-carboxymethylcellulose polymer, Water Sci. Technol., 61 (2010) 2293–2301.
  87. M. Vakili, A. Mojiri, T. Kindaichi, G. Cagnetta, J. Yuan, B. Wang, A.S. Giwa, Cross-linked chitosan/zeolite as a fixedbed column for organic micropollutants removal from aqueous solution, optimization with RSM and artificial neural network, J. Environ. Manage., 250 (2019) 109434, doi: 10.1016/j.jenvman.2019.109434.
  88. H. Wang, H. Zhang, J.-Q. Jiang, X Ma, Adsorption of Bisphenol A onto cationic-modified zeolite. Desal. Water Treat., 57 (2016) 26299–26306.
  89. M. Bodzek, K. Konieczny, Membranes in organic micropollutants removal, Curr. Org. Chem., 22 (2018) 1070–1102.
  90. M. Bodzek, Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Arch. Environ. Prot., 45 (2019) 4–19.
  91. Y. Zhang, C. Causserand, P. Aimar, J.P. Cravedi, Removal of Bisphenol A by a nanofiltration membrane in view of drinking water production, Water Res., 40 (2006) 3793–3799.
  92. M. Dudziak, M. Bodzek, Removal of xenoestrogens from water during reverse osmosis and nanofiltration – effect of selected phenomena on separation of organic micropollutants, Arch. Civ. Eng. Environ., 1 (2008) 95–101.
  93. F. Khazaali, A. Kargari, M. Rokhsaran, Application of lowpressure reverse osmosis for effective recovery of Bisphenol A from aqueous waste, Desal. Water Treat., 52 (2014) 7543–7547.
  94. S. Nasseri, S. Ebrahimi, M. Abtahi, R. Saeedi, Synthesis and characterization of polysulfone/graphene oxide nanocomposite membranes for removal of Bisphenol A from water, J. Environ. Manage., 205 (2018) 174–182.
  95. A.M. Zahari, C.W. Shuo, P. Sathishkumar, A.R.M. Yusoff, F.L. Gu, N.A. Buang, W.-J. Lau, R.J. Gohari, Z. Yusop, A reusable electrospun PVDF-PVP-MnO2 nanocomposite membrane for Bisphenol A removal from drinking water, J. Environ. Chem. Eng., 6 (2018) 5801–5811.
  96. M.A. Romero-Reyes, J.M. Heemstra, Sequestration and removal of multiple small-molecule contaminants using an optimized Aptamer-based ultrafiltration system, Bioconjugate Chem., 32 (2021) 2043–2051.
  97. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Application of nanotechnology and nanomaterials in water and wastewater treatment: membranes, photocatalysis and disinfection, Desal. Water Treat., 186 (2020) 88–106.
  98. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Nanophotocatalysis in water and wastewater treatment, Desal. Water Treat., 243 (2021) 51–74.
  99. B. Ning, N.J.D. Graham, Y. Zhang, Degradation of octylphenol and nonylphenol by ozone. Part I: direct reaction, Chemosphere, 68 (2007) 1163–1172.
  100. S. Baig, G. Hansmann, B. Paolini, Ozone oxidation of oestrogenic active substances in wastewater and drinking water, Water Sci. Technol., 58 (2008) 451–458.
  101. G. Bertanza, R. Pedrazzani, M. Papa, G. Mazzoleni, N. Steimberg, L. Caimi, C. Montani, D. Dilorenzo, Removal of BPA and NPnEOs from secondary effluents of municipal WWTPs by means of ozonation, Ozone Sci. Eng., 32 (2010) 204–208.
  102. M. Ibáňez, E. Gracia-Lor, L. Bijlsma, E. Morales, L. Pastor, F. Hernandez, Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone, J. Hazard. Mater., 260 (2013) 389–398.
  103. J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Advanced oxidation processes for wastewater treatment: state of the art, Water Air Soil Pollut., 205 (2010) 187–204.
  104. H. Vatankhah, S.M. Riley, C. Murray, O. Quineones, X.K Steirer, E.R.V. Dickenson, C.C. Bellona, Simultaneous ozone and granular activated carbon for advanced treatment of micropollutants in municipal wastewater effluent, Chemosphere, 234 (2019) 845–854.
  105. Y. Wang, R. Wang, N. Lin, Y. Wang, X. Zhang, Highly efficient microwave-assisted Fenton degradation Bisphenol A using iron oxide modified double perovskite intercalated montmorillonite composite nanomaterial as catalyst, J. Colloid Interface Sci., 594 (2021) 446–459.
  106. B. Guo, T. Xu, L. Zhang, S. Li, A heterogeneous Fentonlike system with green iron nanoparticles for the removal of Bisphenol A: performance, kinetics and transformation mechanism, J. Environ. Manage., 272 (2020) 111047, doi: 10.1016/j.jenvman.2020.111047.
  107. H. Zhang, Y. He, L. Lai, G. Yao, B. Lai, Catalytic ozonation of Bisphenol A in aqueous solution by Fe3O4–MnO2 magnetic composites: performance, transformation pathways and mechanism, Sep. Purif. Technol., 245 (2020) 116449, doi: 10.1016/j.seppur.2019.116449.
  108. N. Oturan, E.D. van Hullebusch, H. Zhang, L. Mazeas, H. Budzinski, K. Le Menach, M.A. Oturan, Occurrence and removal of organic micropollutants in landfill leachates treated by electrochemical advanced oxidation processes, Environ. Sci. Technol., 49 (2015) 12187–12196.
  109. K. Musaev, D. Mirkhamitova, A. Yarbekov, S. Nurmanov, K. Akbarov, O. Ruzimuradov, Facile synthesis of
    SiO2-TiO2 photocatalyst nanoparticles for degradation of phenolic water pollutants, SN Appl. Sci., 1 (2019) 1164, doi: 10.1007/s42452-019-1192-y.
  110. N.J. Ismail, M.H.D. Othman, S. Abu Bakar, S.H. Sheikh Abdul Kadir, M.H. Abd Aziz, M.A.B. Pauzan, S.K. Hubadillah, T. El-badawy, J. Jaafar, A.M. Rahman, Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of Bisphenol A, J. Water Process Eng., 37 (2020) 101504, doi: 10.1016/j.jwpe.2020.101504.
  111. Y. Tang, X. Yin, M. Mu, Y. Jiang, X. Li, H. Zhang, T. Ouyang, Anatase TiO2@MIL-101(Cr) nanocomposite for photocatalytic degradation of Bisphenol A, Colloids Surf., A, 596 (2020) 124745, doi: 10.1016/j.colsurfa.2020.124745.
  112. S.S. Sambaza, A. Maity, K. Pillay, Polyaniline-coated TiO2 nanorods for photocatalytic degradation of Bisphenol A in water, ACS Omega, 5 (2020) 29642–29656.
  113. G. Wang, J. Dai, Q. Luo, N. Deng, Photocatalytic degradation of Bisphenol A by TiO2@aspartic acid-β-cyclodextrin@reduced graphene oxide, Sep. Purif. Technol., 254 (2021) 117574, doi: 10.1016/j.seppur.2020.117574.
  114. J. You, W. Sun, S. Su, Z. Ao, C. Liu, G. Yao, B. Lai, Degradation of Bisphenol A by peroxymonosulfate activated with oxygen vacancy modified nano-NiO-ZnO composite oxides: a typical surface-bound radical system, Chem. Eng. J., 400 (2020) 125915, doi: 10.1016/j.cej.2020.125915.
  115. S. Shekoohiyan, A. Rahmania, M. Chamack, G. Moussavi, O. Rahmanian, V. Alipour, S. Giannakis, A novel CuO/Fe2O3/ZnO composite for visible-light assisted photocatalytic oxidation of Bisphenol A: kinetics, degradation pathways, and toxicity elimination, Sep. Purif. Technol., 242 (2020) 116821, doi: 10.1016/j.seppur.2020.116821.
  116. M. Kamaraj, T.G. Nithya, P. Chidambararajan, M. Kebede, Photocatalytic degradation of Bisphenol-A in water under sunlight irradiation over ZnO nanoparticles fabricated by Ethiopian cactus pear fruit peel infusions, Optik, 208 (2020) 164539, doi: 10.1016/j.ijleo.2020.164539.
  117. X. Ruan, Y. Hu, Effectively enhanced photodegradation of Bisphenol A by in-situ g-C3N4-Zn/Bi2WO6 heterojunctions and mechanism study, Chemosphere, 246 (2020) 125782, doi: 10.1016/j.chemosphere.2019.125782.
  118. K. Talukdar, B.-M. Jun, Y. Yoon, Y. Kim, A. Fayyaz, C.M. Park, Novel Z-scheme Ag3PO4/Fe3O4-activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of Bisphenol A, J. Hazard. Mater., 398 (2020) 123025, doi: 10.1016/j.jhazmat.2020.123025.
  119. C.-Y. Wang, Q. Zeng, G. Zhu, Novel S-doped BiOBr nanosheets for the enhanced photocatalytic degradation of Bisphenol A under visible light irradiation, Chemosphere, 268 (2021) 128854, doi: 10.1016/j.chemosphere.2020.128854.
  120. M. Krupiński, J. Długonski, Biodegradation of nonylphenols by some microorganisms, Post. Mikrobiol., 4 (2011) 313–319.
  121. G.J. Zhou, G.G. Ying, S. Liu, L.J. Zhou, Z.F. Chen, F.Q. Peng, Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae, Environ. Sci. Processes Impacts, 16 (2014) 2018–2027.
  122. Q.T. Gao, Y.S. Wong, N.F.Y. Tam, Removal and biodegradation of nonylphenol by different Chlorella species, Mar. Pollut. Bull., 63 (2011) 445–451.
  123. J.X. Wang, P. Xie, N.C. Guo, Effects of nonylphenol on the growth and microcystin production of Microcystis strains, Environ. Res., 103 (2007) 70–78.
  124. N. Zhou, Y. Liu, S. Cao, R. Guo, Y. Ma, J. Chen, Biodegradation of bisphenol compounds in the surface water of Taihu Lake and the effect of humic acids, Sci. Total Environ., 723 (2020) 138164, doi: 10.1016/j.scitotenv.2020.138164.
  125. A. Cydzik-Kwiatkowska, M. Zielińska, K. Bernat, K. Bułkowska, I. Wojnowska-Baryła, Insights into mechanisms of Bisphenol A biodegradation in aerobic granular sludge, Bioresour. Technol., 315 (2020) 123806, doi: 10.1016/j.biortech.2020.123806.
  126. M. Noszczyńska, Z. Piotrowska-Seget, Bisphenols: application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers, Chemosphere, 201 (2018) 214–223.
  127. S. Oh, D. Choi, Microbial community enhances biodegradation of Bisphenol A through selection of Sphingomonadaceae, Microbiol. Ecol., 77 (2019) 631–639.
  128. A. Eltoukhy, Y. Jia, R. Nahurira, M.A. Abo-Kadoum, I. Khokhar, J. Wang, Y. Yan, Biodegradation of endocrine disruptor Bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China, BMC Microbiol., 20 (2020) 11, doi: 10.1186/s12866-020-1699-9.
  129. M.-K. Zühlke, R. Schlüter, A.-K. Henning, M. Lipka, A. Mikolasch, P. Schumann, M. Giersberg, G. Kunze, F. Schauer, A novel mechanism of conjugate formation of Bisphenol A and its analogues by Bacillus amyloliquefaciens: detoxification and reduction of estrogenicity of bisphenols, Int. Biodeterior. Biodegrad., 109 (2016) 165–173.
  130. Y. Jia, A. Eltoukhy, J. Wang, X. Li, T.S. Hlaing, M.M. Aung, M.T. Nwe, I. Lamraoui, Y. Yan, Biodegradation of Bisphenol A by Sphingobium sp. YC-JY1 and the essential role of cytochrome P450 monooxygenase, Int. J. Mol. Sci., 21 (2020) 3588, doi: 10.3390/ijms21103588.
  131. R. White, S. Jobling, S. Hoare, J. Sumpter, M. Parker, Environmentally persistent alkylphenolic compounds are estrogenic, Endocrinology, 135 (1994) 175–182.
  132. I. Nehring, L. Falkowska, M. Staniszewska, I. Pawliczka, K. Bodziach, Maternal transfer of phenol derivatives in the Baltic grey seal Halichoerus grypus grypus, Environ. Pollut., 242 (2018) 1642–1651.
  133. M. Bodzek, Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Arch. Environ. Prot., 45 (2019) 4–19.
  134. S. Talmage, Environmental and Human Safety of Major Surfactants, Alcohol Ethoxylates and Alkylphenol Ethoxylates, Lewis Publishers, The United States of America, London, Tokyo, 1994.
  135. C.M. Markey, C.L. Michaelson, C. Sonnenschein, A.M. Soto, Alkylphenols and Bisphenol A as Environmental Estrogens, M. Metzler, Ed., Endocrine Disruptors – Part I, The Handbook of Environmental Chemistry, Vol. 3L, Springer, Berlin, Heidelberg, 2001.
  136. J.H. Kang, Y. Katayama, F. Kondo, Biodegradation or metabolism of Bisphenol A: from microorganisms to mammals, Toxicology, 217 (2006) 81–90.
  137. I. Nehring, A. Grajewska, L. Falkowska, M. Staniszewska, I. Pawliczka, D. Saniewska, Transfer of mercury and phenol derivatives across the placenta of Baltic grey seals (Halichoerus grypus grypus), Environ. Pollut., 231 (2017) 1005–1012.
  138. S.C. Cunha, J.O. Fernandes, Quantification of free and total Bisphenol A and Bisphenol B in human urine by dispersive liquid–liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography–mass spectrometry (MD–GC/MS), Talanta, 83 (2010) 117–125.
  139. N. Belkhamssa, J.P. Costa, C.I.L. Justino, P.S.M. Santos, S. Cardoso, A.C. Duarte, T.R. Santos, M. Ksibi, Development of an electrochemical biosensor for alkylphenol detection, Talanta, 158 (2016) 30–34.
  140. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come Into Contact With Food.
  141. https://echa.europa.eu/pl/hot-topics/bisphenols (Accessed 23.08.2023).
  142. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy.
  143. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/ EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy.
  144. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption.