References

  1. K. Samsonowska, A. Kaszuba, Microplastic in natural environment (Mikroplastik w środowisku naturalnym), Polimery, 67 (2022) 28–33 (in Polish).
  2. M. Bodzek, A. Pohl, Removal of microplastics in unit processes used in water and wastewater treatment: a review, Arch. Environ. Prot., 48 (2022) 102–128.
  3. K.H.D. Tang, T. Hadibarata, Microplastics removal through water treatment plants: its feasibility, efficiency, future prospects and enhancement by proper waste management, Environ. Challenges, 5 (2021) 100264, doi: 10.1016/j.envc.2021.100264.
  4. S. Ziajahromi, P.A. Neale, L. Rintoul, F.D.L. Leusch, Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics, Water Res., 112 (2017) 93–99.
  5. L. Yang, K. Li, S. Cui, Y. Kang, L. An, K. Lei, Removal of microplastics in municipal sewage from China’s largest water reclamation plant, Water Res., 155 (2019) 175–181.
  6. H. Hidayaturrahman, T.-G. Lee, A study on characteristics of microplastic in wastewater of South Korea: identification, quantification, and fate of microplastics during treatment process, Mar. Pollut. Bull., 146 (2019) 696–702.
  7. M. Pivokonsky, L. Cermakova, K. Novotna, P. Peer, T. Cajthaml, V. Janda, Occurrence of microplastics in raw and treated drinking water, Sci. Total Environ., 643 (2018) 1644–1651.
  8. W. Nocoń, K. Moraczewska-Majkut, E. Wiśniowska, Microplastics in surface water under strong anthropopression, Desal. Water Treat., 134 (2018) 174–181.
  9. K. Moraczewska-Majkut, W. Nocoń, M. Zyguła, E. Wiśniowska, Quantitative analysis of microplastics in wastewater during selected treatment processes, Desal. Water Treat., 199 (2020) 352–361.
  10. E. Wiśniowska, K. Moraczewska-Majkut, W. Nocoń, Selected unit processes in microplastics removal from water and wastewater, Desal. Water Treat., 199 (2020) 512–520.
  11. M. Bodzek, J. Bohdziewicz, K. Konieczny, Membrane Technics in Environmental Protection (Techniki membranowe w ochronie środowiska), Silesian University of Technology Press, Gliwice, 1997 (in Polish).
  12. A. Kobyłka, Zastosowanie adsorpcji na węglu aktywnym w różnych układach technologicznych oczyszczalni ścieków Application of Adsorption on Activated Carbon in Various technological Systems in Sewage Plants, Tech. Issues, (2016) 27–34.
  13. J. Kapp, W. Robert, S. Henry, Toxicological Information Sources and Their Use, CRC Press, 1999.
  14. H. Siegel, M. Eggersdorfer, Ketones, in: Ullmann’s Encycl. Ind. Chem., Wiley-VCH, Weinheim, Weinheim, Germany, 2000, pp. 187–207.
  15. Isophorone Diisocyanate, Sigma-Aldrich. Available at https://www.sigmaaldrich.com/PL/pl/product/aldrich/317624 (Access: 2023-10-09).
  16. A. Woźnica, Dimethyl phthalate determination in workplace air, Pod. i Metod. Oceny Środowiska Pr., 36 (2019) 47–59.
  17. Dimethyl Phthalate, BMT. Available at https://cargohandbook. com/Dimethyl_Phthalate (Access: 2023-08-08).
  18. D. Błędzka, D. Gryglik, M. Lach, M. Olak, J.S. Miller, Efektywność degradacji ksenoestrogenu 4-tert-oktylofenolu metodami fotochemicznymi, Inżynieria i Apar. Chem., 48 (2009) 28–29.
  19. Biomonitoring Summary, National Biomonitoring Program, 4-Tert-Octylphenol, General Information, 2017.
  20. D.K. Kanaujiya, M. Purnima, G. Pugazhenthi, T.K. Dutta, K. Pakshirajan, An indigenous tubular ceramic membrane integrated bioreactor system for biodegradation of phthalates mixture from contaminated wastewater, Biodegradation, 34 (2023) 1–16.
  21. L.A. Constantin, M.A. Constantin, I. Barrere, M.D. Puiu, Dimethyl phthalate removal from aqueous system using a photocatalytic membrane reactor with suspended photocatalyst, Rom. J. Ecol. Environ. Chem., 4 (2022) 104–111.
  22. National Center for Biotechnology Information, PubChem Compound Summary for CID 6544, Isophorone, 2023. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Isophorone (Access: 2023-09-14).
  23. National Center for Biotechnology Information, PubChem Compound Summary for CID 8554, Dimethyl Phthalate, 2023. Available at https://pubchem.ncbi.nlm.nih.gov/compound/ Dimethyl-Phthalate (Access: 2023-09-14).
  24. National Center for Biotechnology Information, PubChem Compound Summary for CID 8814, 4-Tert-Octylphenol, 2023. Available at https://pubchem.ncbi.nlm.nih.gov/compound/4- tert-Octylphenol (Access: 2023-09-14.).
  25. E. Kudlek, Decomposition of contaminants of emerging concern in advanced oxidation processes, Water, 10 (2018) 955, doi: 10.3390/w10070955.
  26. E. Kudlek, Formation of micropollutant decomposition by-products during oxidation processes supported by natural sunlight, Desal. Water Treat., 186 (2020) 361–372.
  27. https://www.sterlitech.com/catalogsearch/result/?q=NF270#gsc.tab=0&gsc.q=NF270&gsc.page=1 (Access: 2023-09-20).
  28. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, K. Sven. Vetenskapsakademiens. Handl., 24 (1898) 1–39.
  29. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  30. R.S. Juang, M.L. Chen, Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins, Ind. Eng. Chem. Res., 36 (1997) 813–820.
  31. C. Aharoni, F.C. Tompkins, Kinetics of adsorption and desorption and the Elovich equation, Adv. Catal., 21 (1970) 1–49.
  32. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  33. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  34. D.S. Jovanovic, Physical adsorption of gases I: isotherms for monolayer and multilayer adsorption, Colloid. Polym. Sci., 235 (1969) 1203–1214.
  35. M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces, Chem. Rev., 60 (1960) 235–241.
  36. E.Q. Lim, M.Q. Seah, W.J. Lau, H. Hasbullah, P.S. Goh, A.F. Ismail, D. Emadzadeh, Evaluation of surface properties and separation performance of NF and RO membranes for phthalates removal, Membranes (Basel), 13 (2023) 413, doi: 10.3390/membranes13040413.
  37. Y. Ishigaki, T. Shimajiri, T. Takeda, R. Katoono, T. Suzuki, Longest C–C single bond among neutral hydrocarbons with a bond length beyond 1.8 Å, Chem, 4 (2018) 795–806.
  38. A.I. Cirillo, G. Tomaiuolo, S. Guido, Membrane fouling phenomena in microfluidic systems: from technical challenges to scientific opportunities, Micromachines, 12 (2021) 820, doi: 10.3390/mi12070820.
  39. G. Kaminska, M. Dudziak, J. Bohdziewicz, E. Kudlek, Effectivness of removal of selected biologically active micropollutants in nanofiltration, Ecol. Chem. Eng. a-Chemia I Inz. Ekol. A, 23 (2016) 185–198.
  40. A. Khan, J. Ali, S.U.U. Jamil, N. Zahra, T.B. Tayaba, M.J. Iqbal, H. Waseem, Chapter 22 – Removal of Micropollutants, M.Z. Hashmi, S. Wang, Z. Ahmed, Eds., Environ. Micropollutants, Elsevier, Amsterdam, Netherlands, 2022, pp. 443–461.
  41. Z. Derakhshan, M. Mokhtari, F. Babaei, R.M. Ahmadi, M.H. Ehrampoush, M. Faramarzian, Removal methods of antibiotic compounds from aqueous environments - a review, J. Environ. Health Sustainable Dev., 1 (2016) 43–62.
  42. T. Ngulube, J.R. Gumbo, V. Masindi, A. Maity, Calcined magnesite as an adsorbent for cationic and anionic dyes: characterization, adsorption parameters, isotherms and kinetics study, Heliyon, 4 (2018) e00838, doi: 10.1016/j.heliyon.2018.e00838.
  43. T.R. Sahoo, B. Prelot, Chapter 7 – Adsorption Processes for the Removal of Contaminants From Wastewater: The Perspective Role of Nanomaterials and Nanotechnology, B. Bonelli, F.S. Freyria, I. Rossetti, R. Sethi, Eds., Nanomaterials for the Detection and Removal of Wastewater Pollutants: A Volume in Micro and Nano Technologies, Elsevier, Amsterdam, Netherlands, 2020, pp. 161–222.
  44. M. Hadi, M.R. Samarghandi, G. McKay, Equilibrium twoparameter isotherms of acid dyes sorption by activated carbons: study of residual errors, Chem. Eng. J., 160 (2010) 408–416.
  45. C.S.T. Araújo, I.L.S. Almeida, H.C. Rezende, S.M.L.O. Marcionilio, J.J.L. Léon, T.N. de Matos, Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms, Microchem. J., 137 (2018) 348–354.
  46. D. Ordonez, A. Valencia, H. Elhakiem, N. Bin Chang, M.P. Wanielista, Adsorption thermodynamics and kinetics of Advanced Green Environmental Media (AGEM) for nutrient removal and recovery in agricultural discharge and stormwater runoff, Environ. Pollut., 266 (2020) 115172, doi: 10.1016/j. envpol.2020.115172.
  47. N. Can, B.C. Ömür, A. Altındal, Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film, Sens. Actuators, B, 237 (2016) 953–961.
  48. M.S. Podder, C.B. Majumder, SD/MnFe2O4 composite, a biosorbent for As(III) and As(V) removal from wastewater: optimization and isotherm study, J. Mol. Liq., 212 (2015) 382–404.
  49. V.S. Munagapati, D.S. Kim, Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite, Ecotoxicol. Environ. Saf., 141 (2017) 226–234.
  50. M. Ghasemi, Mu. Naushad, N. Ghasemi, Y. Khosravi-fard, Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: adsorption isotherm and kinetic studies, J. Ind. Eng. Chem., 20 (2014) 2193–2199.
  51. M. Staniszewska, B. Graca, I. Nehring, The fate of bisphenol A, 4-tert-octylphenol and 4-nonylphenol leached from plastic debris into marine water - experimental studies on biodegradation and sorption on suspended particulate matter and nano-TiO2, Chemosphere, 145 (2016) 535–542.
  52. Z.A. ALOthman, A.Y. Badjah, I. Ali, Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4‑tert‑octylphenol endocrine disruptor in water, J. Mol. Liq., 275 (2019) 41–48.
  53. E. Ahmadi, B. Kakavandi, A. Azari, H. Izanloo, H. Gharibi, A.H. Mahvi, A. Javid, S.Y. Hashemi, The performance of mesoporous magnetite zeolite nanocomposite in removing dimethyl phthalate from aquatic environments, Desal. Water Treat., 57 (2016) 27768–27782.
  54. S. Zhuang, X. Zhu, J. Wang, Adsorptive removal of plasticizer (dimethyl phthalate) and antibiotic (sulfamethazine) from municipal wastewater by magnetic carbon nanotubes, J. Mol. Liq., 319 (2020) 114267, doi: 10.1016/j.molliq.2020.114267.