References
- K. Samsonowska, A. Kaszuba, Microplastic in natural
environment (Mikroplastik w środowisku naturalnym),
Polimery, 67 (2022) 28–33 (in Polish).
- M. Bodzek, A. Pohl, Removal of microplastics in unit
processes used in water and wastewater treatment: a review,
Arch. Environ. Prot., 48 (2022) 102–128.
- K.H.D. Tang, T. Hadibarata, Microplastics removal through
water treatment plants: its feasibility, efficiency, future prospects
and enhancement by proper waste management, Environ.
Challenges, 5 (2021) 100264, doi: 10.1016/j.envc.2021.100264.
- S. Ziajahromi, P.A. Neale, L. Rintoul, F.D.L. Leusch, Wastewater
treatment plants as a pathway for microplastics: development
of a new approach to sample wastewater-based microplastics,
Water Res., 112 (2017) 93–99.
- L. Yang, K. Li, S. Cui, Y. Kang, L. An, K. Lei, Removal of
microplastics in municipal sewage from China’s largest water
reclamation plant, Water Res., 155 (2019) 175–181.
- H. Hidayaturrahman, T.-G. Lee, A study on characteristics
of microplastic in wastewater of South Korea: identification,
quantification, and fate of microplastics during treatment
process, Mar. Pollut. Bull., 146 (2019) 696–702.
- M. Pivokonsky, L. Cermakova, K. Novotna, P. Peer, T. Cajthaml,
V. Janda, Occurrence of microplastics in raw and treated
drinking water, Sci. Total Environ., 643 (2018) 1644–1651.
- W. Nocoń, K. Moraczewska-Majkut, E. Wiśniowska, Microplastics
in surface water under strong anthropopression,
Desal. Water Treat., 134 (2018) 174–181.
- K. Moraczewska-Majkut, W. Nocoń, M. Zyguła, E. Wiśniowska,
Quantitative analysis of microplastics in wastewater during
selected treatment processes, Desal. Water Treat., 199 (2020)
352–361.
- E. Wiśniowska, K. Moraczewska-Majkut, W. Nocoń, Selected
unit processes in microplastics removal from water and
wastewater, Desal. Water Treat., 199 (2020) 512–520.
- M. Bodzek, J. Bohdziewicz, K. Konieczny, Membrane Technics
in Environmental Protection (Techniki membranowe w
ochronie środowiska), Silesian University of Technology Press,
Gliwice, 1997 (in Polish).
- A. Kobyłka, Zastosowanie adsorpcji na węglu aktywnym w
różnych układach technologicznych oczyszczalni ścieków
Application of Adsorption on Activated Carbon in Various
technological Systems in Sewage Plants, Tech. Issues, (2016) 27–34.
- J. Kapp, W. Robert, S. Henry, Toxicological Information Sources
and Their Use, CRC Press, 1999.
- H. Siegel, M. Eggersdorfer, Ketones, in: Ullmann’s Encycl. Ind.
Chem., Wiley-VCH, Weinheim, Weinheim, Germany, 2000,
pp. 187–207.
- Isophorone Diisocyanate, Sigma-Aldrich. Available at https://www.sigmaaldrich.com/PL/pl/product/aldrich/317624 (Access:
2023-10-09).
- A. Woźnica, Dimethyl phthalate determination in workplace
air, Pod. i Metod. Oceny Środowiska Pr., 36 (2019) 47–59.
- Dimethyl Phthalate, BMT. Available at https://cargohandbook.
com/Dimethyl_Phthalate (Access: 2023-08-08).
- D. Błędzka, D. Gryglik, M. Lach, M. Olak, J.S. Miller, Efektywność
degradacji ksenoestrogenu 4-tert-oktylofenolu metodami
fotochemicznymi, Inżynieria i Apar. Chem., 48 (2009) 28–29.
- Biomonitoring Summary, National Biomonitoring Program,
4-Tert-Octylphenol, General Information, 2017.
- D.K. Kanaujiya, M. Purnima, G. Pugazhenthi, T.K. Dutta,
K. Pakshirajan, An indigenous tubular ceramic membrane
integrated bioreactor system for biodegradation of phthalates
mixture from contaminated wastewater, Biodegradation,
34 (2023) 1–16.
- L.A. Constantin, M.A. Constantin, I. Barrere, M.D. Puiu,
Dimethyl phthalate removal from aqueous system using a
photocatalytic membrane reactor with suspended photocatalyst,
Rom. J. Ecol. Environ. Chem., 4 (2022) 104–111.
- National Center for Biotechnology Information, PubChem
Compound Summary for CID 6544, Isophorone, 2023. Available
at: https://pubchem.ncbi.nlm.nih.gov/compound/Isophorone
(Access: 2023-09-14).
- National Center for Biotechnology Information, PubChem
Compound Summary for CID 8554, Dimethyl Phthalate, 2023.
Available at https://pubchem.ncbi.nlm.nih.gov/compound/
Dimethyl-Phthalate (Access: 2023-09-14).
- National Center for Biotechnology Information, PubChem
Compound Summary for CID 8814, 4-Tert-Octylphenol, 2023.
Available at https://pubchem.ncbi.nlm.nih.gov/compound/4-
tert-Octylphenol (Access: 2023-09-14.).
- E. Kudlek, Decomposition of contaminants of emerging
concern in advanced oxidation processes, Water, 10 (2018) 955,
doi: 10.3390/w10070955.
- E. Kudlek, Formation of micropollutant decomposition
by-products during oxidation processes supported by natural
sunlight, Desal. Water Treat., 186 (2020) 361–372.
- https://www.sterlitech.com/catalogsearch/result/?q=NF270#gsc.tab=0&gsc.q=NF270&gsc.page=1 (Access:
2023-09-20).
- S. Lagergren, Zur theorie der sogenannten adsorption geloster
stoffe, K. Sven. Vetenskapsakademiens. Handl., 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- R.S. Juang, M.L. Chen, Application of the Elovich equation to
the kinetics of metal sorption with solvent-impregnated resins,
Ind. Eng. Chem. Res., 36 (1997) 813–820.
- C. Aharoni, F.C. Tompkins, Kinetics of adsorption and
desorption and the Elovich equation, Adv. Catal., 21 (1970)
1–49.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–470.
- I. Langmuir, The adsorption of gases on plane surfaces
of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918)
1361–1403.
- D.S. Jovanovic, Physical adsorption of gases I: isotherms for
monolayer and multilayer adsorption, Colloid. Polym. Sci.,
235 (1969) 1203–1214.
- M.M. Dubinin, The potential theory of adsorption of gases
and vapors for adsorbents with energetically nonuniform
surfaces, Chem. Rev., 60 (1960) 235–241.
- E.Q. Lim, M.Q. Seah, W.J. Lau, H. Hasbullah, P.S. Goh,
A.F. Ismail, D. Emadzadeh, Evaluation of surface properties
and separation performance of NF and RO membranes
for phthalates removal, Membranes (Basel), 13 (2023) 413,
doi: 10.3390/membranes13040413.
- Y. Ishigaki, T. Shimajiri, T. Takeda, R. Katoono, T. Suzuki,
Longest C–C single bond among neutral hydrocarbons with a
bond length beyond 1.8 Å, Chem, 4 (2018) 795–806.
- A.I. Cirillo, G. Tomaiuolo, S. Guido, Membrane fouling
phenomena in microfluidic systems: from technical challenges
to scientific opportunities, Micromachines, 12 (2021) 820,
doi: 10.3390/mi12070820.
- G. Kaminska, M. Dudziak, J. Bohdziewicz, E. Kudlek,
Effectivness of removal of selected biologically active
micropollutants in nanofiltration, Ecol. Chem. Eng. a-Chemia I
Inz. Ekol. A, 23 (2016) 185–198.
- A. Khan, J. Ali, S.U.U. Jamil, N. Zahra, T.B. Tayaba,
M.J. Iqbal, H. Waseem, Chapter 22 – Removal of Micropollutants,
M.Z. Hashmi, S. Wang, Z. Ahmed, Eds., Environ.
Micropollutants, Elsevier, Amsterdam, Netherlands, 2022,
pp. 443–461.
- Z. Derakhshan, M. Mokhtari, F. Babaei, R.M. Ahmadi,
M.H. Ehrampoush, M. Faramarzian, Removal methods of
antibiotic compounds from aqueous environments - a review,
J. Environ. Health Sustainable Dev., 1 (2016) 43–62.
- T. Ngulube, J.R. Gumbo, V. Masindi, A. Maity, Calcined magnesite
as an adsorbent for cationic and anionic dyes: characterization,
adsorption parameters, isotherms and kinetics study, Heliyon,
4 (2018) e00838, doi: 10.1016/j.heliyon.2018.e00838.
- T.R. Sahoo, B. Prelot, Chapter 7 – Adsorption Processes for the
Removal of Contaminants From Wastewater: The Perspective
Role of Nanomaterials and Nanotechnology, B. Bonelli,
F.S. Freyria, I. Rossetti, R. Sethi, Eds., Nanomaterials for the
Detection and Removal of Wastewater Pollutants: A Volume
in Micro and Nano Technologies, Elsevier, Amsterdam,
Netherlands, 2020, pp. 161–222.
- M. Hadi, M.R. Samarghandi, G. McKay, Equilibrium twoparameter
isotherms of acid dyes sorption by activated carbons:
study of residual errors, Chem. Eng. J., 160 (2010) 408–416.
- C.S.T. Araújo, I.L.S. Almeida, H.C. Rezende,
S.M.L.O. Marcionilio, J.J.L. Léon, T.N. de Matos, Elucidation of
mechanism involved in adsorption of Pb(II) onto lobeira fruit
(Solanum lycocarpum) using Langmuir, Freundlich and Temkin
isotherms, Microchem. J., 137 (2018) 348–354.
- D. Ordonez, A. Valencia, H. Elhakiem, N. Bin Chang,
M.P. Wanielista, Adsorption thermodynamics and kinetics of
Advanced Green Environmental Media (AGEM) for nutrient
removal and recovery in agricultural discharge and stormwater
runoff, Environ. Pollut., 266 (2020) 115172, doi: 10.1016/j.
envpol.2020.115172.
- N. Can, B.C. Ömür, A. Altındal, Modeling of heavy metal ion
adsorption isotherms onto metallophthalocyanine film, Sens.
Actuators, B, 237 (2016) 953–961.
- M.S. Podder, C.B. Majumder, SD/MnFe2O4 composite,
a biosorbent for As(III) and As(V) removal from wastewater:
optimization and isotherm study, J. Mol. Liq., 212 (2015)
382–404.
- V.S. Munagapati, D.S. Kim, Equilibrium isotherms, kinetics,
and thermodynamics studies for congo red adsorption using
calcium alginate beads impregnated with nano-goethite,
Ecotoxicol. Environ. Saf., 141 (2017) 226–234.
- M. Ghasemi, Mu. Naushad, N. Ghasemi, Y. Khosravi-fard,
Adsorption of Pb(II) from aqueous solution using new
adsorbents prepared from agricultural waste: adsorption
isotherm and kinetic studies, J. Ind. Eng. Chem., 20 (2014)
2193–2199.
- M. Staniszewska, B. Graca, I. Nehring, The fate of bisphenol
A, 4-tert-octylphenol and 4-nonylphenol leached from
plastic debris into marine water - experimental studies on
biodegradation and sorption on suspended particulate matter
and nano-TiO2, Chemosphere, 145 (2016) 535–542.
- Z.A. ALOthman, A.Y. Badjah, I. Ali, Facile synthesis and
characterization of multi walled carbon nanotubes for fast and
effective removal of 4‑tert‑octylphenol endocrine disruptor in
water, J. Mol. Liq., 275 (2019) 41–48.
- E. Ahmadi, B. Kakavandi, A. Azari, H. Izanloo, H. Gharibi,
A.H. Mahvi, A. Javid, S.Y. Hashemi, The performance of
mesoporous magnetite zeolite nanocomposite in removing
dimethyl phthalate from aquatic environments, Desal. Water
Treat., 57 (2016) 27768–27782.
- S. Zhuang, X. Zhu, J. Wang, Adsorptive removal of plasticizer
(dimethyl phthalate) and antibiotic (sulfamethazine) from
municipal wastewater by magnetic carbon nanotubes, J. Mol.
Liq., 319 (2020) 114267, doi: 10.1016/j.molliq.2020.114267.