References
- X.H. Liu, C.S. Li, L. Chen, W. Xin, A review of energy-saving
technologies for swing-beam extractors, J. Jilin Univ.: Eng. Ed.,
51 (2021) 26.
- F.D. Guo, L. Fan, H.L. Gong, C.L. Sun, Status and development
trend of variable speed drive and control technology of oil
pumping machine, Oilfield Mach., 46 (2017) 16–19.
- W.X. Xie, Q.X. Su, L.Q. Guo, Z. Sun, Wear analysis of pumping
cylinder-plunger friction pair based on ANSYS, Pet. Mach.,
50 (2022) 115–121.
- X.G. Yang, X.C. Zeng, X.L. Zhang, Z.G. Wang, Development of
a suspended-weight balanced swim beam pumping machine,
Mach. Manuf., 59 (2021) 36–40.
- T.C. Cheng, M.Z. Jiang, W. Li, X. Jiang, Theoretical study and
numerical simulation analysis of pumping pump valve gap
flow, Pet. Mach., 47 (2019) 94–99.
- H.B. Wang, S.M. Dong, Q.M. Gan, H. Xin, G. Zhu, Simulation
model of dynamic parameters of low-production pumping
engine wells and ways to improve system efficiency, J. Pet.,
39 (2018) 1299–1307.
- W.Y. Wang, G.Q. Wan, X.B. Lv, A new method for calculating
the filling degree of rod pump based on dynamic simulation,
Pet. Mach., 40 (2012) 67–71.
- X.F. Liu, C.H. Liu, G.Q. Liu, H.M. He, Y.G. Qi, Pump-valve
motion characteristics of low-flow rate fluid flow rod pumps
in horizontal wells in coal-bearing formations, J. China
Univ. Pet.: Nat. Sci. Ed., 44 (2020) 141–147.
- Z.G. Duan, Z.M. Si, H. Ye, Q.G. Zhao, X. Ren, W. Luo, H.B. Sun,
Study of plunger motion law of downhole pumping under
flexible control conditions, Pet. Mach., 50 (2022) 125–130.
- Y.X. Lai, J. Wu, K. Wang, Optimal design of vertical vibration
parameters for high-speed elevators based on multi-objective
genetic algorithm, J. Jinan Univ.: Nat. Sci. Ed., 37 (2023) 108–115.
- H. Zeng, Q.Y. Wang, Z.H. Zhang, Multi-objective optimization
of centrifugal pump genetic algorithm with pressure pulsation
analysis, Manuf. Autom., 43 (2021) 118–122.
- Y.J. Ma, W.X. Yun, Advances in genetic algorithm research,
Comput. Appl. Res., 29 (2012) 1201–1206+1210.
- X.L. Jin, J.J. Li, Research on multi-objective path optimization
algorithm based on genetic algorithm, Comput. Technol. Dev.,
28 (2018) 54–58.
- H.C. Zhang, L.H. Yang, An improved NSGA-II based
recommendation algorithm, Comput. Eng. Des., 41 (2020)
2495–2500.
- J.Q. Li, G.Z. Shi, Study on the relationship between crossover
rate and variation rate of genetic algorithm, J. Wuhan Univ.
Technol.: Transp. Sci. Eng. Ed., 27 (2003) 97–99.
- A. Slowik, H. Kwasnicka, Evolutionary algorithms and their
applications to engineering problems, Neural Comput. Appl.,
32 (2020) 12363–12379.
- P. Liashchynskyi, P. Liashchynskyi, Grid search, random
search, genetic algorithm: a big comparison for NAS, arXiv,
(2019), abs/1912.06059.