References

  1. P.M. Santi, K. Hewitt, D.F. VanDine, E. Barillas Cruz, Debrisflow impact, vulnerability, and response, Nat. Hazards, 56 (2011) 371–402.
  2. P. Kattel, J. Kafle, J.-T. Fischer, M. Mergili, B.M. Tuladhar, S.P. Pudasaini, Interaction of two-phase debris flow with obstacles, Eng. Geol., 242 (2018) 197–217.
  3. H. Luo, L. Zhang, H. Wang, J. He, Multi-hazard vulnerability of buildings to debris flows, Eng. Geol., 279 (2020) 105859, doi: 10.1016/j.enggeo.2020.105859.
  4. W. Li, J. Zhu, S. Pirasteh, Q. Zhu, L. Fu, J. Wu, Y. Hu, Y. Dehbi, Investigations of disaster information representation from a geospatial perspective: progress, challenges and recommendations, Trans. GIS, 26 (2022) 1376–1398.
  5. Z. Zhang, M. Li, J. Wang, Z. Yin, Y. Yang, X. Xun, Q. Wu, A calculation model for the spatial distribution and reserves of ground ice - a case study of the Northeast China permafrost area, Eng. Geol., 315 (2023) 107022, doi: 10.1016/j.enggeo.2023.107022.
  6. H. Shu, M. Hürlimann, R. Molowny-Horas, M. González, J. Pinyol, C. Abancó, J. Ma, Relation between land cover and landslide susceptibility in Val d’Aran, Pyrenees (Spain): historical aspects, present situation and forward prediction, Sci. Total Environ., 693 (2019) 133557, doi: 10.1016/j.scitotenv.2019.07.363.
  7. M. Jakob, P. Friele, Frequency and magnitude of debris flows on Cheekye River, British Columbia, Geomorphology, 114 (2010) 382–395.
  8. P. Cui, G.G.D. Zhou, X.H. Zhu, J.Q. Zhang, Scale amplification of natural debris flows caused by cascading landslide dam failures, Geomorphology, 182 (2013) 173–189.
  9. M. Xiong, X. Meng, S. Wang, P. Guo, Y. Li, G. Chen, F. Qing, Z. Cui, Y. Zhao, Effectiveness of debris flow mitigation strategies in mountainous regions, Prog. Phys. Geogr., 40 (2016) 768–793.
  10. Y. Chong, G. Chen, X. Meng, Y. Yang, W. Shi, S. Bian, Y. Zhang, D. Yue, Quantitative analysis of artificial dam failure effects on debris flows – a case study of the Zhouqu ‘8.8’ debris flow in northwestern China, Sci. Total Environ., 792 (2021) 148439, doi: 10.1016/j.scitotenv.2021.148439.
  11. M. Hürlimann, D. Rickenmann, V. Medina, A. Bateman, Evaluation of approaches to calculate debris-flow parameters for hazard assessment, Eng. Geol., 102 (2008) 152–163.
  12. G.G. Chevalier, V. Medina, M. Hürlimann, A. Bateman, Debris-flow susceptibility analysis using
    fluvio-morphological parameters and data mining: application to the Central-Eastern Pyrenees, Nat. Hazards, 67 (2013) 213–238.
  13. L. Yu, C. Peng, A.D. Regmi, V. Murray, A. Pasuto, G. Titti, M. Shafique, T. Priyadarshana D.G., An international program on Silk Road Disaster Risk Reduction–a Belt and Road initiative (2016–2020), J. Mountain Sci., 15 (2018) 1383–1396.
  14. C. Scheidl, M. Chiari, R. Kaitna, M. Müllegger, A. Krawtschuk, T. Zimmermann, D. Proske, Analysing debris-flow impact models, based on a small-scale modelling approach, Surv. Geophys., 34 (2013) 121–140.
  15. H. Shu, J. Ma, J. Guo, S. Qi, Z. Guo, P. Zhang, Effects of rainfall on surface environment and morphological characteristics in the Loess Plateau, Environ. Sci. Pollut. Res., 27 (2020) 37455–37467.
  16. H. Shu, J. Ma, S. Qi, P. Chen, Z.Z. Guo, P. Zhang, Experimental results of the impact pressure of debris flows in loess regions, Nat. Hazards, 103 (2020) 3329–3356.
  17. R.M. Iverson, M.E. Reid, M. Logan, R.G. LaHusen, J.W. Godt, J.P. Griswold, Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nat. Geosci., 4 (2011) 116–121.
  18. L. Bugnion, B.W. McArdell, P. Bartelt, C. Wendeler, Measurements of hillslope debris flow impact pressure on obstacles, Landslides, 9 (2012) 179–187.
  19. T. de Haas, A.L. Densmore, M. Stoffel, H. Suwa, F. Imaizumi, J.A. Ballesteros-Cánovas, T. Wasklewicz, 2018. Avulsions and the spatio-temporal evolution of debris-flow fans, Earth Sci. Rev., 177 (2018) 53–75.
  20. C. Scheip, K. Wegmann, Insights on the growth and mobility of debris flows from repeat high-resolution lidar, Landslides, 19 (2022) 1297–1319.
  21. F. Gentile, T. Bisantino, G.T. Liuzzi, Debris-flow risk analysis in south Gargano watersheds (Southern-Italy), Nat. Hazards, 44 (2008) 1–17.
  22. H. Raetzo, O. Lateltin, D. Bollinger, J. Tripet, Hazard assessment in Switzerland – Codes of Practice for mass movements, Bull. Eng. Geol. Environ., 61 (2002) 263–268.
  23. W.-j. Liang, D.-f. Zhuang, D. Jiang, J.-j. Pan, H.-y. Ren, Assessment of debris flow hazards using a Bayesian Network, Geomorphology, 171–172 (2012) 94–100.
  24. H. Shu, J. Ma, P. Zhang, H. Yu, S. Ren, S. Qi, H. Yang, Debrisflow risk assessment: from catchment to regional scale: a case study from Southern Gansu Province, China, Ekoloji, 28 (2019) 2319–2333.
  25. S. Zhang, A comprehensive approach to the observation and prevention of debris flows in China, Nat. Hazards, 7 (1993) 1–23.
  26. B.W. McArdell, P. Bartelt, J. Kowalski, Field observations of basal forces and fluid pore pressure in a debris flow, Geophys. Res. Lett., 34 (2007), doi: 10.1029/2006GL029183.
  27. T. Takahashi, A review of Japanese debris flow research, Int. J. Erosion Control Eng., 2 (2013) 1–14.
  28. J.-b. Tang, K.-h. Hu, A debris-flow impact pressure model combining material characteristics and flow dynamic parameters, J. Mountain Sci., 15 (2018) 2721–2729.
  29. H. Shu, J. Ma, H. Yu, M. Hürlimann, P. Zhang, F. Liu, S. Qi, Effect of density and total weight on flow depth, velocity, and stresses in loess debris flows, Water, 10 (2018) 1784, doi: 10.3390/w10121784.
  30. R.K. Dash, D.P. Kanungo, J.P. Malet, Runout modelling and hazard assessment of Tangni debris flow in Garhwal Himalayas, India, Environ. Earth Sci., 80 (2021) 338, doi: 10.1007/s12665-021-09637-z.
  31. H. Cheng, Y. Huang, W. Zhang, Q. Xu, Physical process-based runout modeling and hazard assessment of catastrophic debris flow using SPH incorporated with ArcGIS: a case study of the Hongchun gully, Catena, 212 (2022) 106052, doi: 10.1016/j. catena.2022.106052.
  32. P. Shen, L. Zhang, H. Chen, R. Fan, EDDA 2.0: integrated simulation of debris flow initiation and dynamics considering two initiation mechanisms, Geosci. Model Dev., 11 (2018) 2841–2856.
  33. J.S. O’Brien, P.J. Julien, W.T. Fullerton, Two‐dimensional water flood and mudflow simulation, J. Hydraul. Eng., 119 (1993) 244–261.
  34. O. Hungr, S. McDougall, Two numerical models for landslide dynamic analysis, Comput. Geosci., 35 (2009) 978–992.
  35. A. von Boetticher, J.M. Turowski, B.W. McArdell, D. Rickenmann, M. Hürlimann, C. Scheidl, J.W. Kirchner, DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – Part 2: model validation with experiments, Geosci. Model Dev., 10 (2017) 3963–3978.
  36. P. Zhang, J. Ma, H. Shu, T. Han, Y. Zhang, Simulating debris flow deposition using a two-dimensional finite model and Soil Conservation Service-curve number approach for Hanlin Gully of southern Gansu (China), Environ. Earth Sci., 73 (2015) 6417–6426.
  37. P. Bertolo, G.F. Wieczorek, Calibration of numerical models for small debris flows in Yosemite Valley, California, USA, Nat. Hazards Earth Syst. Sci., 5 (2005) 993–1001.
  38. C.-Y. Chen, Q. Wang, Debris flow-induced topographic changes: effects of recurrent debris flow initiation, Environ. Monit. Assess., 189 (2017) 449, doi: 10.1007/s10661-017-6169-y.
  39. Z. Deng, J. Liu, L. Guo, J. Li, J. Li, Y. Jia, Pure risk premium rating of debris flows based on a dynamic run-out model: a case study in Anzhou, China, Nat. Hazards, 106 (2021) 235–253.
  40. H. Shu, S. Qi, N. Ning, J. Ma, P. Zhang, Risk assessment of debris flow disaster: a case study of Wudu District in the south of Gansu Province China, J. Nat. Disasters, 25 (2016) 34–41 (in Chinese).
  41. S. Bai, J. Wang, B. Thiebes, C. Cheng, Y. Yang, Analysis of the relationship of landslide occurrence with rainfall: a case study of Wudu County, China, Arabian J. Geosci., 7 (2014) 1277–1285.
  42. S.B. Bai, J. Wang, F.Y. Zhang, A. Pozdnoukhov, M. Kanevski, Prediction of Landslide Susceptibility Using Logistic Regression: A Case Study in Bailongjiang River Basin, China, J. Ma, Y. Yin, J. Yu, S.G. Zhou, Eds., Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2008), Vol. 4, IEEE, Jinan, China, 2008, pp. 647–651.
  43. J.S. O’Brien, FLO-2D User’s Manual, Non-published Reference Manual, Version 99.2, FLO-2D Software, Inc., Nutrioso, Arizona, US, 1999.
  44. J.S. O’Brien, FLO-2D User’s Manual, Version 2006.01, FLO-2D Software, Inc., Nutrioso, Arizona, US, 2006.
  45. P. Canuti, N. Casagli, F. Catani, G. Falorni, Modeling of the Guagua Pichincha volcano (Ecuador) lahars, Phys. Chem. Earth Parts A/B/C, 27 (2002) 1587–1599.
  46. C. Calligaris, M.A. Boniello, L. Zini, Debris flow modelling in Julian Alps using FLO-2D, WIT Trans. Eng. Sci., 60 (2008) 81–88.
  47. J. Ma, X. Wang, P. Zhang, S. Qi, Geological Hazard and Risk Analysis of Landslide and Debris Flow in Bailong River Basin, Lanzhou University Press, Lanzhou, 2015 (in Chinese).
  48. P. Zhang, J.Z. Ma, H.P. Shu, G. Wang, Numerical simulation of erosion and deposition debris flow based on FLO-2D Model, J. Lanzhou Univ. (Nat. Sci.), 50 (2014) 363–375 (in Chinese).
  49. P. Zhang, Hazard Assessment and Predicting Method of Debris Flow of Small Catchments in Earthquake-Affected Regions, Ph.D. Theses, Lanzhou University, Lanzhou, 2015 (in Chinese).
  50. D.A. Woolhiser, Simulation of Unsteady Overland Flow, K. Mahmood, V. Yevjevich, Eds., Unsteady Flow in Open Channels, Water Resources Publications, Fort Collins, 1975, pp. 485–508.
  51. L.H. Xiong, S.L. Guo, P. Liu, Reliability study on design floods derived from the Pearson TypeⅢ distribution, Int. J. Hydroelectric Energy, 20 (2002) 48–50 (in Chinese).
  52. R. Fell, J. Corominas, C. Bonnard, L. Cascini, E. Leroi, W.Z. Savage, Guidelines for landslide susceptibility, hazard and risk zoning for land use planning, Eng. Geol., 102 (2008) 85–98.
  53. P. Aleotti, G. Polloni, Two-dimensional Model of the 1998 Sarno Debris Flows (Italy): Preliminary Results, D. Rickenmann, C.L. Chen, Eds., Third International Conference on Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Millpress, Rotterdam, 2003, pp. 553–563.
  54. D. Rickenmann, Hangmuren und Gefahrenbeurteilung. Kurzbericht für dasBundesamt für Wasser und Geologie, Unpublished Report, Universität für Bodenkultur, Wien, und Eidg. Forschungsanstalt WSL, Birmensdorf, 2005, 18 p.
  55. S.C. Chen, C.Y. Wu, B.T. Huang, The efficiency of a risk reduction program for debris-flow disasters – a case study of the Songhe community in Taiwan, Nat. Hazards Earth Syst. Sci., 10 (2010) 1591–1603.
  56. D.J. Varnes, Hazard Zonation: A Review of Principal and Practice, The United Nations Educational, Scientific, Cultural Organization (UNESCO), Paris, 1984, 63 p.
  57. BUWAL, Berücksichtigung der Hochwassergefahren bei raumwirksamen Tätigkeiten, Empfehlungen. Bundesamt für Umwelt Wald und Landschaft, Switzerland, Berne, 1997, 42 pp.
  58. M. Jakob, Debris-flow Hazard Analysis, In: Debris-flow Hazards and Related Phenomena, Springer, Berlin, 2005, pp. 411–443.
  59. V. D’Agostino, M. Cesca, L. Marchi, Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps), Geomorphology, 115 (2010) 294–304.
  60. M. Hürlimann, B.W. McArdell, C. Rickli, Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland, Geomorphology, 20 (2015) 20–32.
  61. R.M. Iverson, The Physics of Debris Flows, Rev. Geophys., 35 (1997) 245–296.
  62. B. Turnbull, E.T. Bowman, J.N. McElwaine, Debris flows: experiments and modelling, C.R. Phys., 16 (2015) 86–96.
  63. T. de Haas, L. Braat, J.R.F.W. Leuven, I.R. Lokhorst, M.G. Kleinhans, Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments, J. Geophys. Res.: Earth Surf., 120 (2015) 1949–1972.
  64. T.A. Dijkstra, J. Wasowski, M.G. Winter, X.M. Meng, Introduction to geohazards of central China, Q. J. Eng. Geol. Hydrogeol., 47 (2014) 195–199.