References
- P.M. Santi, K. Hewitt, D.F. VanDine, E. Barillas Cruz, Debrisflow
impact, vulnerability, and response, Nat. Hazards,
56 (2011) 371–402.
- P. Kattel, J. Kafle, J.-T. Fischer, M. Mergili, B.M. Tuladhar,
S.P. Pudasaini, Interaction of two-phase debris flow with
obstacles, Eng. Geol., 242 (2018) 197–217.
- H. Luo, L. Zhang, H. Wang, J. He, Multi-hazard vulnerability
of buildings to debris flows, Eng. Geol., 279 (2020) 105859,
doi: 10.1016/j.enggeo.2020.105859.
- W. Li, J. Zhu, S. Pirasteh, Q. Zhu, L. Fu, J. Wu, Y. Hu,
Y. Dehbi, Investigations of disaster information representation
from a geospatial perspective: progress, challenges and
recommendations, Trans. GIS, 26 (2022) 1376–1398.
- Z. Zhang, M. Li, J. Wang, Z. Yin, Y. Yang, X. Xun, Q. Wu,
A calculation model for the spatial distribution and reserves
of ground ice - a case study of the Northeast China
permafrost area, Eng. Geol., 315 (2023) 107022, doi: 10.1016/j.enggeo.2023.107022.
- H. Shu, M. Hürlimann, R. Molowny-Horas, M. González,
J. Pinyol, C. Abancó, J. Ma, Relation between land cover and
landslide susceptibility in Val d’Aran, Pyrenees (Spain):
historical aspects, present situation and forward prediction,
Sci. Total Environ., 693 (2019) 133557, doi: 10.1016/j.scitotenv.2019.07.363.
- M. Jakob, P. Friele, Frequency and magnitude of debris
flows on Cheekye River, British Columbia, Geomorphology,
114 (2010) 382–395.
- P. Cui, G.G.D. Zhou, X.H. Zhu, J.Q. Zhang, Scale amplification
of natural debris flows caused by cascading landslide dam
failures, Geomorphology, 182 (2013) 173–189.
- M. Xiong, X. Meng, S. Wang, P. Guo, Y. Li, G. Chen, F. Qing,
Z. Cui, Y. Zhao, Effectiveness of debris flow mitigation
strategies in mountainous regions, Prog. Phys. Geogr., 40 (2016)
768–793.
- Y. Chong, G. Chen, X. Meng, Y. Yang, W. Shi, S. Bian, Y. Zhang,
D. Yue, Quantitative analysis of artificial dam failure effects
on debris flows – a case study of the Zhouqu ‘8.8’ debris flow
in northwestern China, Sci. Total Environ., 792 (2021) 148439,
doi: 10.1016/j.scitotenv.2021.148439.
- M. Hürlimann, D. Rickenmann, V. Medina, A. Bateman,
Evaluation of approaches to calculate debris-flow parameters
for hazard assessment, Eng. Geol., 102 (2008) 152–163.
- G.G. Chevalier, V. Medina, M. Hürlimann, A. Bateman,
Debris-flow susceptibility analysis using
fluvio-morphological
parameters and data mining: application to the Central-Eastern
Pyrenees, Nat. Hazards, 67 (2013) 213–238.
- L. Yu, C. Peng, A.D. Regmi, V. Murray, A. Pasuto, G. Titti,
M. Shafique, T. Priyadarshana D.G., An international program
on Silk Road Disaster Risk Reduction–a Belt and Road
initiative (2016–2020), J. Mountain Sci., 15 (2018) 1383–1396.
- C. Scheidl, M. Chiari, R. Kaitna, M. Müllegger, A. Krawtschuk,
T. Zimmermann, D. Proske, Analysing debris-flow impact
models, based on a small-scale modelling approach,
Surv. Geophys., 34 (2013) 121–140.
- H. Shu, J. Ma, J. Guo, S. Qi, Z. Guo, P. Zhang, Effects of rainfall
on surface environment and morphological characteristics
in the Loess Plateau, Environ. Sci. Pollut. Res., 27 (2020)
37455–37467.
- H. Shu, J. Ma, S. Qi, P. Chen, Z.Z. Guo, P. Zhang, Experimental
results of the impact pressure of debris flows in loess regions,
Nat. Hazards, 103 (2020) 3329–3356.
- R.M. Iverson, M.E. Reid, M. Logan, R.G. LaHusen, J.W. Godt,
J.P. Griswold, Positive feedback and momentum growth during
debris-flow entrainment of wet bed sediment, Nat. Geosci.,
4 (2011) 116–121.
- L. Bugnion, B.W. McArdell, P. Bartelt, C. Wendeler,
Measurements of hillslope debris flow impact pressure on
obstacles, Landslides, 9 (2012) 179–187.
- T. de Haas, A.L. Densmore, M. Stoffel, H. Suwa, F. Imaizumi,
J.A. Ballesteros-Cánovas, T. Wasklewicz, 2018. Avulsions and
the spatio-temporal evolution of debris-flow fans, Earth Sci.
Rev., 177 (2018) 53–75.
- C. Scheip, K. Wegmann, Insights on the growth and mobility
of debris flows from repeat high-resolution lidar, Landslides,
19 (2022) 1297–1319.
- F. Gentile, T. Bisantino, G.T. Liuzzi, Debris-flow risk analysis
in south Gargano watersheds (Southern-Italy), Nat. Hazards,
44 (2008) 1–17.
- H. Raetzo, O. Lateltin, D. Bollinger, J. Tripet, Hazard assessment
in Switzerland – Codes of Practice for mass movements,
Bull. Eng. Geol. Environ., 61 (2002) 263–268.
- W.-j. Liang, D.-f. Zhuang, D. Jiang, J.-j. Pan, H.-y. Ren,
Assessment of debris flow hazards using a Bayesian Network,
Geomorphology, 171–172 (2012) 94–100.
- H. Shu, J. Ma, P. Zhang, H. Yu, S. Ren, S. Qi, H. Yang, Debrisflow
risk assessment: from catchment to regional scale: a case
study from Southern Gansu Province, China, Ekoloji, 28 (2019)
2319–2333.
- S. Zhang, A comprehensive approach to the observation and
prevention of debris flows in China, Nat. Hazards, 7 (1993)
1–23.
- B.W. McArdell, P. Bartelt, J. Kowalski, Field observations
of basal forces and fluid pore pressure in a debris flow,
Geophys. Res. Lett., 34 (2007), doi: 10.1029/2006GL029183.
- T. Takahashi, A review of Japanese debris flow research, Int. J.
Erosion Control Eng., 2 (2013) 1–14.
- J.-b. Tang, K.-h. Hu, A debris-flow impact pressure model
combining material characteristics and flow dynamic
parameters, J. Mountain Sci., 15 (2018) 2721–2729.
- H. Shu, J. Ma, H. Yu, M. Hürlimann, P. Zhang, F. Liu, S. Qi,
Effect of density and total weight on flow depth, velocity, and
stresses in loess debris flows, Water, 10 (2018) 1784, doi: 10.3390/w10121784.
- R.K. Dash, D.P. Kanungo, J.P. Malet, Runout modelling
and hazard assessment of Tangni debris flow in Garhwal
Himalayas, India, Environ. Earth Sci., 80 (2021) 338,
doi: 10.1007/s12665-021-09637-z.
- H. Cheng, Y. Huang, W. Zhang, Q. Xu, Physical process-based
runout modeling and hazard assessment of catastrophic debris
flow using SPH incorporated with ArcGIS: a case study of
the Hongchun gully, Catena, 212 (2022) 106052, doi: 10.1016/j.
catena.2022.106052.
- P. Shen, L. Zhang, H. Chen, R. Fan, EDDA 2.0: integrated
simulation of debris flow initiation and dynamics considering
two initiation mechanisms, Geosci. Model Dev., 11 (2018)
2841–2856.
- J.S. O’Brien, P.J. Julien, W.T. Fullerton, Two‐dimensional water
flood and mudflow simulation, J. Hydraul. Eng., 119 (1993)
244–261.
- O. Hungr, S. McDougall, Two numerical models for landslide
dynamic analysis, Comput. Geosci., 35 (2009) 978–992.
- A. von Boetticher, J.M. Turowski, B.W. McArdell, D. Rickenmann,
M. Hürlimann, C. Scheidl, J.W. Kirchner, DebrisInterMixing-2.3:
a finite volume solver for three-dimensional debris-flow
simulations with two calibration parameters – Part 2: model
validation with experiments, Geosci. Model Dev., 10 (2017)
3963–3978.
- P. Zhang, J. Ma, H. Shu, T. Han, Y. Zhang, Simulating debris
flow deposition using a two-dimensional finite model and
Soil Conservation Service-curve number approach for Hanlin
Gully of southern Gansu (China), Environ. Earth Sci., 73 (2015)
6417–6426.
- P. Bertolo, G.F. Wieczorek, Calibration of numerical models for
small debris flows in Yosemite Valley, California, USA, Nat.
Hazards Earth Syst. Sci., 5 (2005) 993–1001.
- C.-Y. Chen, Q. Wang, Debris flow-induced topographic changes:
effects of recurrent debris flow initiation, Environ. Monit.
Assess., 189 (2017) 449, doi: 10.1007/s10661-017-6169-y.
- Z. Deng, J. Liu, L. Guo, J. Li, J. Li, Y. Jia, Pure risk premium
rating of debris flows based on a dynamic run-out model: a case
study in Anzhou, China, Nat. Hazards, 106 (2021) 235–253.
- H. Shu, S. Qi, N. Ning, J. Ma, P. Zhang, Risk assessment of
debris flow disaster: a case study of Wudu District in the south
of Gansu Province China, J. Nat. Disasters, 25 (2016) 34–41
(in Chinese).
- S. Bai, J. Wang, B. Thiebes, C. Cheng, Y. Yang, Analysis of the
relationship of landslide occurrence with rainfall: a case study
of Wudu County, China, Arabian J. Geosci., 7 (2014) 1277–1285.
- S.B. Bai, J. Wang, F.Y. Zhang, A. Pozdnoukhov, M. Kanevski,
Prediction of Landslide Susceptibility Using Logistic
Regression: A Case Study in Bailongjiang River Basin, China,
J. Ma, Y. Yin, J. Yu, S.G. Zhou, Eds., Proceedings of the Fifth
International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD 2008), Vol. 4, IEEE, Jinan, China, 2008,
pp. 647–651.
- J.S. O’Brien, FLO-2D User’s Manual, Non-published Reference
Manual, Version 99.2, FLO-2D Software, Inc., Nutrioso,
Arizona, US, 1999.
- J.S. O’Brien, FLO-2D User’s Manual, Version 2006.01, FLO-2D
Software, Inc., Nutrioso, Arizona, US, 2006.
- P. Canuti, N. Casagli, F. Catani, G. Falorni, Modeling of the
Guagua Pichincha volcano (Ecuador) lahars, Phys. Chem. Earth
Parts A/B/C, 27 (2002) 1587–1599.
- C. Calligaris, M.A. Boniello, L. Zini, Debris flow modelling in
Julian Alps using FLO-2D, WIT Trans. Eng. Sci., 60 (2008) 81–88.
- J. Ma, X. Wang, P. Zhang, S. Qi, Geological Hazard and Risk
Analysis of Landslide and Debris Flow in Bailong River Basin,
Lanzhou University Press, Lanzhou, 2015 (in Chinese).
- P. Zhang, J.Z. Ma, H.P. Shu, G. Wang, Numerical simulation of
erosion and deposition debris flow based on FLO-2D Model,
J. Lanzhou Univ. (Nat. Sci.), 50 (2014) 363–375 (in Chinese).
- P. Zhang, Hazard Assessment and Predicting Method of Debris
Flow of Small Catchments in Earthquake-Affected Regions,
Ph.D. Theses, Lanzhou University, Lanzhou, 2015 (in Chinese).
- D.A. Woolhiser, Simulation of Unsteady Overland Flow,
K. Mahmood, V. Yevjevich, Eds., Unsteady Flow in Open
Channels, Water Resources Publications, Fort Collins, 1975,
pp. 485–508.
- L.H. Xiong, S.L. Guo, P. Liu, Reliability study on design
floods derived from the Pearson TypeⅢ distribution, Int. J.
Hydroelectric Energy, 20 (2002) 48–50 (in Chinese).
- R. Fell, J. Corominas, C. Bonnard, L. Cascini, E. Leroi,
W.Z. Savage, Guidelines for landslide susceptibility, hazard
and risk zoning for land use planning, Eng. Geol., 102 (2008)
85–98.
- P. Aleotti, G. Polloni, Two-dimensional Model of the 1998 Sarno
Debris Flows (Italy): Preliminary Results, D. Rickenmann,
C.L. Chen, Eds., Third International Conference on Debris-flow
Hazards Mitigation: Mechanics, Prediction, and Assessment,
Millpress, Rotterdam, 2003, pp. 553–563.
- D. Rickenmann, Hangmuren und Gefahrenbeurteilung.
Kurzbericht für dasBundesamt für Wasser und Geologie,
Unpublished Report, Universität für Bodenkultur, Wien,
und Eidg. Forschungsanstalt WSL, Birmensdorf, 2005, 18 p.
- S.C. Chen, C.Y. Wu, B.T. Huang, The efficiency of a risk
reduction program for debris-flow disasters – a case study of
the Songhe community in Taiwan, Nat. Hazards Earth Syst. Sci.,
10 (2010) 1591–1603.
- D.J. Varnes, Hazard Zonation: A Review of Principal and
Practice, The United Nations Educational, Scientific, Cultural
Organization (UNESCO), Paris, 1984, 63 p.
- BUWAL, Berücksichtigung der Hochwassergefahren bei
raumwirksamen Tätigkeiten, Empfehlungen. Bundesamt für
Umwelt Wald und Landschaft, Switzerland, Berne, 1997, 42 pp.
- M. Jakob, Debris-flow Hazard Analysis, In: Debris-flow
Hazards and Related Phenomena, Springer, Berlin, 2005,
pp. 411–443.
- V. D’Agostino, M. Cesca, L. Marchi, Field and laboratory
investigations of runout distances of debris flows in the
Dolomites (Eastern Italian Alps), Geomorphology, 115 (2010)
294–304.
- M. Hürlimann, B.W. McArdell, C. Rickli, Field and laboratory
analysis of the runout characteristics of hillslope debris flows
in Switzerland, Geomorphology, 20 (2015) 20–32.
- R.M. Iverson, The Physics of Debris Flows, Rev. Geophys.,
35 (1997) 245–296.
- B. Turnbull, E.T. Bowman, J.N. McElwaine, Debris flows:
experiments and modelling, C.R. Phys., 16 (2015) 86–96.
- T. de Haas, L. Braat, J.R.F.W. Leuven, I.R. Lokhorst,
M.G. Kleinhans, Effects of debris flow composition on
runout, depositional mechanisms, and deposit morphology in
laboratory experiments, J. Geophys. Res.: Earth Surf., 120 (2015)
1949–1972.
- T.A. Dijkstra, J. Wasowski, M.G. Winter, X.M. Meng,
Introduction to geohazards of central China, Q. J. Eng.
Geol. Hydrogeol., 47 (2014) 195–199.