References
- B. Huang, C. Lei, C. Wei, G. Zeng, Chlorinated volatile organic
compounds (Cl-VOCs) in environment — sources, potential
human health impacts, and current remediation technologies,
Environ. Int., 71 (2014) 118–138.
- S.M. Cordova-Rosa, R.I. Dams, E.V. Cordova-Rosa,
M.R. Radetski, A.X.R. Corrêa, C.M. Radetski, Remediation
of phenol-contaminated soil by a bacterial consortium and
Acinetobacter calcoaceticus isolated from an industrial wastewater
treatment plant, J. Hazard. Mater., 164 (2009) 61–66.
- K. Ikehata, M.G. El-Din, S.A. Snyder, Ozonation and advanced
oxidation treatment of emerging organic pollutants in water
and wastewater, Ozone Sci. Eng., 30 (2008) 21–26.
- D.W. Sundstrom, B.A. Weir, H.E. Klei, Destruction of aromatic
pollutants by UV light catalyzed oxidation with hydrogen
peroxide, Environ. Prog., 8 (1989) 6–11.
- L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee,
K.E. Taylor, N. Biswas, A short review of techniques for phenol
removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167.
- G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies
for the removal of phenol from fluid streams: a short review of
recent developments, J. Hazard. Mater., 160 (2008) 265–288.
- S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A.
Najafi, E. Mofarrah, Phenol removal from industrial wastewaters:
a short review, Desal. Water Treat., 53 (2015) 2215–2234.
- C.M. Santana, Z.S. Ferrera, M.E.T. Padrón, J.J.S. Rodríguez,
Methodologies for the extraction of phenolic compounds from
environmental samples: new approaches, Molecules, 14 (2009)
298–320.
- S.A. Boyd, G. Sheng, B.J. Teppen, C.T. Johnston, Mechanisms for
the adsorption of substituted nitrobenzenes by smectite clays,
Environ. Sci. Technol., 35 (2001) 4227–4234.
- Z. Li, P.H. Chang, J.S. Jean, W.T. Jiang, C.J. Wang, Interaction
between tetracycline and smectite in aqueous solution,
J. Colloid Interface Sci., 341 (2010) 311–319.
- A. de Mello Ferreira Guimarães, V.S.T. Ciminelli,
W.L. Vasconcelos, Smectite organofunctionalized with thiol
groups for adsorption of heavy metal ions, Appl. Clay Sci.,
42 (2009) 410–414.
- C. Rey, C. Combes, C. Drouet, H. Sfihi, A. Barroug, Physicochemical
properties of nanocrystalline apatites: implications
for biominerals and biomaterials, Mater. Sci. Eng. C, 27 (2007)
198–205.
- E. Picard, H. Gauthier, J.F. Gérard, E. Espuche, Influence of the
intercalated cations on the surface energy of montmorillonites:
consequences for the morphology and gas barrier properties
of polyethylene/montmorillonites nanocomposites, J. Colloid
Interface Sci., 307 (2007) 364–376.
- C. Queffélec, M. Petit, P. Janvier, D.A. Knight, B. Bujoli, Surface
modification using phosphonic acids and esters, Chem. Rev.,
112 (2012) 3777–3807.
- D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova,
P. Capkova, J. Simonik, Polymer/clay nanocomposites based on
MMT/ODA intercalates, Compos. Interfaces, 9 (2002) 529–540.
- S.F.A. Shattar, N.A. Zakaria, K.Y. Foo, Feasibility of
montmorillonite-assisted adsorption process for the effective
treatment of organo-pesticides, Desal. Water Treat., 57 (2016)
13645–13677.
- V.C. Sanchez, A. Jachak, R.H. Hurt, A.B. Kane, Biological
interactions of graphene-family nanomaterials: An interdisciplinary
review, Chem. Res. Toxicol., 25 (2012) 15–34.
- B.F. Sels, D.E. De Vos, P.A. Jacobs, Hydrotalcite-like anionic
clays in catalytic organic reactions, Catal. Rev. Sci. Eng.,
43 (2001) 443–488.
- A. Dümig, W. Häusler, M. Steffens, I. Kögel-Knabner, Clay
fractions from a soil chronosequence after glacier retreat
reveal the initial evolution of organo-mineral associations,
Geochim. Cosmochim. Acta, 85 (2012) 1–18.
- J.A. Cecilia, C. García-Sancho, E. Vilarrasa-García, J. Jiménez-Jiménez, E. Rodriguez-Castellón, Synthesis, characterization,
uses and applications of porous clays heterostructures: a
review, Chem. Rec., 18 (2018) 1085–1104.
- S.A. Hadigheh, R.J. Gravina, S.T. Smith, Effect of acid attack
on FRP-to-concrete bonded interfaces, Constr. Build. Mater.,
152 (2017) 285–303.
- P. Komadel, J. Madejová, Acid Activation of Clay Minerals,
2nd ed., Institute of Inorganic Chemistry, Slovak Academy
of Sciences, Bratislava, Slovakia, 2013. doi: 10.1016/B978-0-08-098258-8.00013-4
- P. Komadel, Acid activated clays: materials in continuous
demand, Appl. Clay Sci., 131 (2016) 84–99.
- F. Hussin, M.K. Aroua, W.M.A.W. Daud, Textural characteristics,
surface chemistry and activation of bleaching earth:
a review, Chem. Eng. J., 170 (2011) 90–106.
- F.R. Valenzuela Díaz, P. de Souza Santos, Studies on the acid
activation of Brazilian smectitic clays, Quim. Nova, 24 (2001)
345–353.
- A. Gil, L.M. Gandía, M.A. Vicente, Recent advances in the
synthesis and catalytic applications of pillared clays, Catal. Rev.
Sci. Eng., 42 (2000) 145–212.
- H. Zhao, C.H. Zhou, L.M. Wu, J.Y. Lou, N. Li, H.M. Yang,
D.S. Tong, W.H. Yu, Catalytic dehydration of glycerol to
acrolein over sulfuric acid-activated montmorillonite catalysts,
Appl. Clay Sci., 74 (2013) 154–162.
- C. Breen, R. Watson, J. Madejová, P. Komadel, Z. Klapyta,
Acid-activated organoclays: preparation, characterization
and catalytic activity of acid-treated tetraalkyl ammonium exchanged
smectites, Langmuir, 13 (1997) 6473–6479.
- R. Mokaya, W. Jones, Pillared clays and pillared acid-activated
clays: a comparative-study of physical, acidic, and catalytic
properties, J. Catal., 153 (1995) 76–85.
- M. Lenarda, L. Storaro, A. Talon, E. Moretti, P. Riello, Solid
acid catalysts from clays: preparation of mesoporous catalysts
by chemical activation of metakaolin under acid conditions,
J. Colloid Interface Sci., 311 (2007) 537–543.
- P. Komadel, J. Madejová, Chapter 7.1 Acid Activation of Clay
Minerals, Developments in Clay Science, Vol. 1, Institute of
Inorganic Chemistry, Slovak Academy of Sciences, SK-845
36 Bratislava, Slovakia, 2006, pp. 263–287. doi: 10.1016/S1572-4352(05)01008-1
- Z.P. Zhang, M.Z. Rong, M.Q. Zhang, Polymer engineering
based on reversible covalent chemistry: a promising innovative
pathway towards new materials and new functionalities,
Prog. Polym. Sci., 80 (2018) 39–93.
- M. Shamzhy, M. Opanasenko, P. Concepción, A. Martínez,
New trends in tailoring active sites in zeolite-based catalysts,
Chem. Soc. Rev., 48 (2019) 1095–1149.
- R. Raj, Fundamental research in structural ceramics for service
near 2,000°C, J. Am. Ceram. Soc., 76 (1993) 2147–2174.
- H. Su, W. Zhou, Mechanism of accelerated dissolution of mineral
crystals by cavitation erosion, Acta Geochim., 39 (2020) 11–42.
- A. Mandal, B.B. Dey, S.K. Das, Thermodynamics, kinetics, and
isotherms for phenol removal from wastewater using red mud,
Water Pract. Technol., 15 (2020) 705–722.
- N. Bar, A. Mandal, S.K. Das, A Machine Learning Technique
for the Study of Adsorption of Phenol Using Solid Waste,
S. Mukhopadhyay, S. Sarkar, J.K. Mandal, S. Roy, Eds., AI to
Improve e-Governance and Eminence of Life. Studies in Big
Data, Vol. 130, Springer, Singapore, 2023.
doi: 10.1007/978-981-99-4677-8_7
- D. Aran, A. Maul, J.F. Masfaraud, A spectrophotometric
measurement of soil cation exchange capacity based on
cobaltihexamine chloride absorbance, C.R. Geosci., 340 (2008)
865–871.
- H. Moussout, H. Ahlafi, M. Aazza, H. Maghat, Critical of linear
and non-linear equations of pseudo-first-order and pseudosecond-
order kinetic models, Karbala Int. J. Mod. Sci., 4 (2018)
244–254.
- Y.S. Ho, G. McKay, Modèle de pseudo-second-order pour les
processus de sorption, Processus Biochimie., 34 (1999) 451–465.
- M. Aazza, H. Ahlafi, H. Moussout, H. Maghat, Adsorption
of metha-nitrophenol onto alumina and HDTMA modified
alumina: kinetic, isotherm and mechanism investigations,
J. Mol. Liq., 268 (2018) 587–597.
- M.S. Barrios, L.V.F. González, M.A.V. Rodríguez, J.M.M. Pozas,
Acid activation of a palygorskite with HCl: development of
physico-chemical, textural and surface properties, Appl. Clay
Sci., 10 (1995) 247–258.
- S. Saagari, D. Anusha, L. Priyanka, N. Sailaja, Data warehousing,
data mining, OLAP and OLTP technologies are indispensable
elements to support decision-making process in industrial
world, Int. J. Innovation Technol. Explor. Eng., 5 (2015) 1–7.
- J.T. Kloprogge, E. Mahmutagic, R.L. Frost, Mid-infrared
and infrared emission spectroscopy of Cu-exchanged
montmorillonite, J. Colloid Interface Sci., 296 (2006) 640–646.
- J. Madejová, FTIR techniques in clay mineral studies,
Vib. Spectrosc., 31 (2003) 1–10.
- W. Trabelsi, A. Tlili, Phosphoric acid purification through
different raw and activated clay materials (Southern Tunisia),
J. Afr. Earth Sci., 129 (2017) 647–658.
- H. Ouallal, M. Azrour, M. Messaoudi, H. Moussout,
L. Messaoudi, N. Tijani, Incorporation effect of olive pomace on
the properties of tubular membranes, J. Environ. Chem. Eng.,
8 (2020) 103668, doi: 10.1016/j.jece.2020.103668.
- D. Ovadyahu, S. Yariv, I. Lapides, Mechanochemical
adsorption of phenol by tot swelling clay minerals I. Thermo-
IR-spectroscopy and X-ray study, J. Therm. Anal., 51 (1998)
415–430.
- S. Saltzman, S. Yariv, Infrared study of the sorption of phenol
and p-nitrophenol by montmorillonite, Soil Sci. Soc. Am. J.,
39 (1975) 474–479.
- Y. Bulut, H. Aydin, A kinetics and thermodynamics study
of methylene blue adsorption on wheat shells, Desalination,
194 (2006) 259–267.
- A.K. Jain, Suhas, A. Bhatnagar, Methylphenols removal
from water by low-cost adsorbents, J. Colloid Interface Sci.,
251 (2002) 39–45.
- B.K. Singh, N.S. Rawat, Comparative sorption equilibrium
studies of toxic phenols on flyash and impregnated flyash,
J. Chem. Technol. Biotechnol., 61 (1994) 307–317.
- B.K. Singh, P.S. Nayak, Sorption equilibrium studies of toxic
nitro-substituted phenols on fly ash, Adsorpt. Sci. Technol.,
22 (2004) 295–310.
- B.H. Hameed, Equilibrium and kinetics studies of
2,4,6-trichlorophenol adsorption onto activated clay, Colloids
Surf., A, 307 (2007) 45–52.
- R. Rostamian, M. Najafi, A.A. Rafati, Synthesis and
characterization of thiol-functionalized silica nano hollow
sphere as a novel adsorbent for removal of poisonous heavy
metal ions from water: kinetics, isotherms and error analysis,
Chem. Eng. J., 171 (2011) 1004–1011.
- B. Özkaya, Adsorption and desorption of phenol on activated
carbon and a comparison of isotherm models, J. Hazard. Mater.,
129 (2006) 158–163.
- E. Bazrafshan, P. Amirian, A.H. Mahvi, A. Ansari-Moghaddam,
Application of adsorption process for phenolic compounds
removal from aqueous environments: a systematic review,
Global Nest J., 18 (2016) 146–163.
- E. Eren, B. Afsin, Removal of basic dye using raw and acid
activated bentonite samples, J. Hazard. Mater., 166 (2009)
830–835.
- I. Poljanšek, M. Krajnc, Characterization of phenolformaldehyde
prepolymer resins by in line FTIR spectroscopy,
Acta Chim. Slov., 52 (2005) 238–244.
- R. Liu, R.L. Frost, W.N. Martens, Near infrared and mid infrared
investigations of adsorbed phenol on HDTMAB organoclays,
Mater. Chem. Phys., 113 (2009) 707–713.
- H. Ouallal, Y. Dehmani, H. Moussout, L. Messaoudi, M. Azrour,
Kinetic, isotherm and mechanism investigations of the removal
of phenols from water by raw and calcined clays, Heliyon,
5 (2019) e01616, doi: 10.1016/j.heliyon.2019.e01616.
- A. Mandal, P. Mukhopadhyay, S.K. Das, Adsorptive removal of
phenol from wastewater using guava tree bark, Environ. Sci.
Pollut. Res., 27 (2020) 23937–23949.
- A. Mandal, P. Mukhopadhyay, S.K. Das, Efficiency analysis of
rice husk as adsorbent for removal of phenol from wastewater,
J. Environ. Anal. Toxicol., 9 (2019) 605–612.
- A. Mandal, P. Mukhopadhyay, S.K. Das, The study of
adsorption efficiency of rice husk ash for removal of phenol
from wastewater with low initial phenol concentration,
SN Appl. Sci., 1 (2019) 192, doi: 10.1007/s42452-019-0203-3.
- A. Das, N. Bar, S.K. Das, Adsorptive removal of Pb(II) ion on
Arachis hypogaea’s shell: batch experiments, statistical, and GA
modeling, Int. J. Environ. Sci. Technol., 20 (2022) 537–550.
- S. Bhattacharya, N. Bar, B. Rajbansi, S.K. Das, Synthesis of
chitosan-nTiO2 nanocomposite, application in adsorptive
removal of Cu(II)—adsorption and desorption study,
mechanism, scale-up design, statistical, and genetic algorithm
modeling, Appl. Organomet. Chem., 37 (2023) e7094,
doi: 10.1002/aoc.7094.