References

  1. UNESCO-WWAP (World Water Assessment Programme), Water in a Changing World, World Water Development Report 3, UNESCO, Paris, France, 2009.
  2. J. van der Gun, Groundwater and Global Change: Trends, Opportunities and Challenges, UNESCO, Paris, France, 2012.
  3. TWAD Board (Tamil Nadu Water Supply and Drainage Board, India), Salient Features of Tamil Nadu State, 2023. Available at https://www.twadboard.tn.gov.in/content/tamilnadu
  4. World Health Organization, Health Hazards From Nitrate in Drinking Water – Environmental Health, Copenhagen, 1985, Available at https://www.ircwash.org/sites/default/files/203.3- 85HE-993.pdf
  5. World Health Organization, Guidelines for Drinking-Water quality: Fourth Edition Incorporating the First Addendum, ISBN 978-92-4-154995-0, 2017.
  6. Indian Standard Drinking Water – Specification, Second Revision, IS 10500:2012, 2012. Available at http://cgwb.gov.in/ documents/wq-standards.pdf
  7. H.W. Khandare, Scenario of nitrate contamination in groundwater: its causes and prevention, Int. J. ChemTech Res., 5 (2013) 1921–1926.
  8. N. Adimalla, S. Venkatayogi, S.V.G. Das, Assessment of fluoride contamination and distribution: a case study from a rural part of Andhra Pradesh, India, Appl. Water Sci., 9 (2019) 94, doi: 10.1007/s13201-019-0968-y.
  9. I.U. Din, S. Muhammad, I.U. Rehman, Groundwater quality assessment for drinking and irrigation purposes in the Hangu District, Pakistan, J. Food Compos. Anal., 115 (2023) 104919, doi: 10.1016/j.jfca.2022.104919.
  10. X. Wang, T. Sato, B. Xing, S. Tao, Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish, Sci. Total Environ., 350 (2005) 28–37.
  11. K. Sardar, H.S. Ali, S. Hameed, S. Afzal, S. Fatima, M.B. Shakoor, S.A. Bharwana, H.M. Tauqeer, Heavy metals contamination and what are the impacts on living organisms, Greener J. Environ. Manage. Public Safety, 2 (2013) 172–179.
  12. B. Peng, X. Tang, C. Yu, S. Xie, M. Xiao, Z. Song, X. Tu, Heavy metal geochemistry of the acid mine drainage discharged from the Hejiacun uranium mine in central Hunan, China, Environ. Geol., 57 (2009) 421–434.
  13. U.S. Environmental Protection Agency, Risk Assessment: Guidance for Superfund, In: Human Health Evaluation Manual (Part A), Interim Final, Vol. 1, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C., 1989.
  14. J. Dorne, G. Kass, L.R. Bordajandi, B. Amzal, U. Bertelsen, A.F. Castoldi, C. Heppner, M. Eskola, S. Fabiansson, P. Ferrari, Human risk assessment of heavy metals: principles and applications, Met. Ions Life Sci., 8 (2011) 27–60.
  15. D. Ather, S. Muhammad, W. Ali, Fluoride and nitrate contaminations of groundwater and potential health risks assessment in the Khyber district, North-Western Pakistan, Int. J. Environ. Anal. Chem., (2022) 1–16, doi: 10.1080/03067319.2022.2098475.
  16. C. Tokatlı, Ş.G. Onur, M.B. Dindar, G. Malafaia, A.R. Md. T. Islam, S. Muhammad, Spatial-temporal variability and probabilistic health risk assessment of fluoride from lentic ecosystem, Türkiye, Int. J. Environ. Anal. Chem., (2023), doi: 10.1080/03067319.2023.2198645.
  17. A. Azhdarpoor, M. Radfard, M. Pakdel, A. Abbasnia, A. Badeenezhad, A. Akbar Mohammadi, M. Yousefi, Assessing fluoride and nitrate contaminants in drinking water resources and their health risk assessment in a semiarid region of southwest Iran, Desal. Water Treat., 149 (2019) 43–51.
  18. V.P. Nawale, D.B. Malpe, D. Marghade, R. Yenkie, Noncarcinogenic health risk assessment with source identification of nitrate and fluoride polluted groundwater of Wardha subbasin, Central India, Ecotoxicol. Environ. Saf., 208 (2021) 111548, doi: 10.1016/J.ECOENV.2020.111548.
  19. L.K. Duvva, K.K. Panga, R. Dhakate, V. Himabindu, Health risk assessment of nitrate and fluoride toxicity in groundwater contamination in the semi-arid area of Medchal, South India, Appl. Water Sci., 12 (2022) 1e21, doi: 10.1007/S13201-021-01557-4.
  20. G. Singh, M.S. Rishi, R. Herojeet, L. Kaur, K. Sharma, Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India, Environ. Geochem. Health, 42 (2019) 1833–1862.
  21. V. Raja, M.A. Neelakantan, Pollution and non-carcinogenic health risk levels of nitrate and fluoride in groundwater of Ramanathapuram district, Tamil Nadu, India, Int. J. Environ. Anal. Chem., (2021) 1e16, doi: 10.1080/03067319.2021.1890063.
  22. A. Jandu, A. Malik, S.B. Dhull, Fluoride and nitrate in groundwater of rural habitations of semiarid region of northern Rajasthan, India: a hydrogeochemical, multivariate statistical, and human health risk assessment perspective, Environ. Geochem. Health, 43 (2021) 3997–4026.
  23. Water Resources Organization, Public Works Department (PWD), Government of Tamil Nadu, India. Available at https://www.wrd.tn.gov.in/
  24. Statistical Handbook 2020–2021, Department of Economics and Statistics, Government of Tamil Nadu, India. Available at https://www.tn.gov.in/deptst/areaandpopulation.pdf
  25. A.D. Eaton, L.S. Clesceri, E.W. Rice, A.E. Greenberg, Standard Methods for the Examination of Water and Wastewater, 21st Ed., American Public Health Association (APHA) – American Water Works Association (AWWA) – Water Environment Federation (WEF) Press, Washington, D.C., 2005.
  26. S.P. Vaiphei, R.M. Kurakalva, Hydrochemical characteristics and nitrate health risk assessment of groundwater through seasonal variations from an intensive agricultural region of upper Krishna River basin, Telangana, India, Ecotoxicol. Environ. Saf., 213 (2021) 112073, doi: 10.1016/j.ecoenv.2021.112073.
  27. M. Qasemi, M. Afsharnia, A. Zarei, M. Farhang, M. Allahdadi, Non-carcinogenic risk assessment to human health due to intake of fluoride in the groundwater in rural areas of Gonabad and Bajestan, Iran: a case study, Hum. Ecol. Risk Assess.: Int. J., 25 (2018) 1222–1233.
  28. H. Su, W. Kang, Y. Li, Z. Li, Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: sources and related human health risks, Environ. Pollut., 286 (2021) 117287, doi: 10.1016/J.ENVPOL.2021.117287.
  29. C. Su, Y. Wang, X. Xie, Y. Zhu, An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China, Environ. Sci. Processes Impacts, 17 (2015) 791–801.
  30. U.S. Environmental Protection Agency, Office of Water, 2018 Edition of the Drinking Water Standards and Health Advisories Tables, 2018.
  31. Y. Zhai, Y. Lei, J. Wu, Y. Teng, J. Wang, X. Zhao, X. Pan, Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data, Environ. Sci. Pollut. Res., 24 (2017) 3640–3653.
  32. O.A. Adeyeye, C. Xiao, Z. Zhang, A.S. Yawe, X. Liang, Groundwater fluoride chemistry and health risk assessment of multi-aquifers in Jilin Qianan, Northeastern China, Ecotoxicol. Environ. Saf., 211 (2021) 111926, doi: 10.1016/J.ECOENV.2021.111926.
  33. US Environmental Protection Agency, Exposure Factors Handbook, Volume I-General Factors, U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., 1997.
  34. J. Xiao, L. Wang, N. Chai, T. Liu, Z. Jin, J. Rinklebe, Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau, Environ. Pollut., 278 (2021) 116930, doi: 10.1016/J.ENVPOL.2021.116930.
  35. Department of Geology and Mining, Government of Tamil Nadu, India. Available at https://tnmines.tn.gov.in/mineralwealth. php
  36. V.C. Punitha, P. Sivaprakasam, R. Elango, R. Balasubramanian, G.H.M. Kumar, B.T.S.B. Nelson, Prevalence of dental fluorosis in a non-endemic district of Tamil Nadu, India, Biosci. Biotechnol. Res. Asia, 11 (2014) 159–163.
  37. S.R. Grobler, A.J. Louw, W. Van, T.J. Kotze, Dental fluorosis and caries experience in relation to three different drinking water fluoride levels in South Africa, Int. J. Paediatr. Dent., 11 (2001) 372–379.
  38. K.W.M. Msonda, W.R.L. Masamba, E. Fabiano, A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi, Phys. Chem. Earth, 32 (2007) 1178–1184.
  39. P.T.C. Harrison, Fluoride in water: a UK perspective, J. Fluorine Chem., 126 (2005) 1448–1456.
  40. G. Viswanathan, A. Jaswanth, S. Gopalakrishnan, S. Sivailango, Mapping of fluoride endemic areas and assessment of fluoride exposure, Sci. Total Environ., 407 (2009) 1579–1587.
  41. M. Zoran, C. Marijana, A. Biljana, C. Momir, M. Jelena, D.C. Danijela, P.L. Charles, Fluoride in drinking water and dental fluorosis, Sci. Total Environ., 408 (2010) 3507–3512.
  42. A. Rajni, Nitrate contamination in ground water of Jaipur District, Rajasthan, India: it’s impact on human health: a review, Int. J. Sci. Eng. Res., 4 (2016) 111–114.
  43. A. Arif, M. Sughosh, S. Pardeep, P. Jitendra, A.H. Khan, Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Varanasi City, Uttar Pradesh, India, Appl. Water Sci., 115 (2018) 1–13.
  44. Y. Chun-Yuh, W. Deng-Chuang, C. Chih-Ching, Nitrate in drinking water and risk of death from colon cancer in Taiwan, Environ. Int., 33 (2007) 649–653.
  45. H.W. Mary, R.J. Rena, D.B. Jean, M.K. Theo, J.W. Peter, T.N. Bernard, M.V. Cristina, G.B. Simone, Drinking water nitrate and human health: an updated review, Int. J. Environ. Res. Public Health, 15 (2018) 1557, doi: 10.3390/ijerph15071557.