References

  1. D. Saldivia, C. Rosales, R. Barraza, L. Cornejo, Computational analysis for a multi-effect distillation (MED) plant driven by solar energy in Chile, Renewable Energy, 132 (2019) 206–220.
  2. M.L. Elsayed, O. Mesalhy, R.H. Mohammed, L.C. Chow, Transient and thermo-economic analysis of MED-MVC desalination system, Energy, 167 (2019) 283–296.
  3. K. Sztekler, W. Kalawa, W. Nowak, L. Mika, S. Gradziel, J. Krzywanski, E. Radomska, Experimental study of threebed adsorption chiller with desalination function, Energies, 13 (2020) 1–13.
  4. P.G. Youssef, R.K. Al-Dadah, S.M. Mahmoud, Comparative analysis of desalination technologies, Energy Procedia, 61 (2014) 2604–2607.
  5. I.S. Al-Mutaz, I. Wazeer, Comparative performance evaluation of conventional multi-effect evaporation desalination processes, Appl. Therm. Eng., 73 (2014) 1192–11201.
  6. R. Borsani, S. Rebagliati, Fundamentals and costing of MSF desalination plants and comparison with other technologies, Desalination, 182 (2005) 29–37.
  7. F. Al-Juwayhel, H. El-Dessouky, H. Ettouney, Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps, Desalination, 114 (1997) 253–275.
  8. H. Ettouney, H. El-Dessouky, Y. Al-Roumi, Analysis of mechanical vapour compression desalination process, Int. J. Energy Res., 451 (1999) 431–451.
  9. H.T. El-Dessouky, H.M. Ettouney, F. Al-Juwayhel, Multiple effect evaporation-vapour compression desalination processes, Chem. Eng. Res. Des., 78 (2000) 662–676.
  10. H.S. Aybar, Analysis of a mechanical vapor compression desalination system, Desalination, 142 (2002) 181–186.
  11. H. Ettouney, Design of single-effect mechanical vapor compression, Desalination, 190 (2006) 1–15.
  12. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE-MVC) desalination process, Desalination, 230 (2008) 1–15.
  13. J.R. Lara, G. Noyes, M.T. Holtzapple, An investigation of high operating temperatures in mechanical vapor-compression desalination, Desalination, 227 (2008) 217–232.
  14. F.N. Alasfour, H.K. Abdulrahim, The effect of stage temperature drop on MVC thermal performance, Desalination, 265 (2011) 213–221.
  15. V.C. Onishi, A. Carrero-Parreño, J.A. Reyes-Labarta, R. Ruiz- Femenia, R. Salcedo-Díaz, E.S. Fraga, J.A. Caballero, Shale gas flowback water desalination: single vs. multiple-effect evaporation with vapor recompression cycle and thermal integration, Desalination, 404 (2017) 230–248.
  16. M.A. Jamil, S.M. Zubair, On thermoeconomic analysis of a single-effect mechanical vapor compression desalination system, Desalination, 420 (2017) 292–307.
  17. R. Schwantes, K. Chavan, D. Winter, C. Felsmann, J. Pfafferott, Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application, Desalination, 428 (2018) 50–68.
  18. M.L. Elsayed, O. Mesalhy, R.H. Mohammed, L.C. Chow, Performance modeling of MED-MVC systems:
    exergy-economic analysis, Energy, 166 (2019) 552–568.
  19. R. Matz, U. Fisher, A comparison of the relative economics of sea water desalination by vapour compression and reverse osmosis for small to medium capacity plants, Desalination, 36 (1981) 137–151.
  20. M. Lucas, B. Tabourier, The mechanical vapour compression process applied to seawater desalination: a 1,500 ton/day unit installed in the nuclear power plant of Flamanville, France, Desalination, 52 (1985) 123–133.
  21. R. Matz, Z. Zimerman, Low-temperature vapour compression and multi-effect distillation of seawater. Effects of design on operation and economics, Desalination, 52 (1985) 201–216.
  22. J.M. Veza, Mechanical vapour compression desalination plants - a case study, Desalination, 101 (1995) 1–10.
  23. G. Kronenberg, F. Lokiec, Low-temperature distillation processes in single- and dual-purpose plants, Desalination, 136 (2001) 189–197.
  24. H. Wu, Y. Li, J. Chen, Research on an evaporator-condenserseparated mechanical vapor compression system, Desalination, 324 (2013) 65–71.
  25. J. Shen, Z. Xing, K. Zhang, Z. He, X. Wang, Development of a water-injected twin-screw compressor for mechanical vapor compression desalination systems, Appl. Therm. Eng., 95 (2016) 125–135.
  26. H. Hong, W. Li, C. Gu, Performance study on a mechanical vapor compression evaporation system driven by roots compressor, Int. J. Heat Mass Transfer, 125 (2018) 343–349.
  27. J. Shen, Z. Xing, X. Wang, Z. He, Analysis of a single-effect mechanical vapor compression desalination system using water injected twin screw compressors, Desalination, 333 (2014) 146–153.
  28. L. Gong, S. Shen, H. Liu, X. Mu, X. Chen, Three-dimensional heat transfer coefficient distributions in a large horizontal-tube falling film evaporator, Desalination, 357 (2015) 104–116.
  29. V.K. Patel, R.V. Rao, Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique, Appl. Therm. Eng., 30 (2010) 1417–1425.
  30. B. Hu, D. Wu, R.Z. Wang, Water vapor compression and its various applications, Renewable Sustainable Energy Rev., 98 (2018) 92–107.
  31. C. Liu, M. Bi, Y. Zhou, G. Cui, A novel model for evaporator structural design in the multi-effect evaporation plant, Appl. Therm. Eng., 176 (2020) 115351, doi: 10.1016/j. applthermaleng.2020.115351.
  32. P. Palenzuela, A.S. Hassan, G. Zaragoza, D.C. Alarcón-Padilla, Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant, Desalination, 337 (2014) 31–42.
  33. H. El-Dessouky, I. Alatiqi, S. Bingulac, H. Ettouney, Steadystate analysis of the multiple effect evaporation desalination process, Chem. Eng. Technol., 21 (1998) 437–451.
  34. H. Yin, H. Wu, Y. Li, J. Quan, Performance analysis of the water-injected centrifugal vapor compressor, Energy, 200 (2020) 117538, doi: 10.1016/j.energy.2020.117538.
  35. A.M. El-Nashar, Economics of small solar-assisted multipleeffect stack distillation plants, Desalination, 130 (2000) 201–215.
  36. M. Papapetrou, A. Cipollina, U. La Commare, G. Micale, G. Zaragoza, G. Kosmadakis, Assessment of methodologies and data used to calculate desalination costs, Desalination, 419 (2017) 8–19.
  37. A. Piacentino, Application of advanced thermodynamics, thermoeconomics and exergy costing to a multiple effect distillation plant: in-depth analysis of cost formation process, Desalination, 371 (2015) 88–103.
  38. W. El-Mudir, M. El-Bousiffi, S. Al-Hengari, Performance evaluation of a small size TVC desalination plant, Desalination, 165 (2004) 269–279.
  39. Y.M. El-Sayed, Designing desalination systems for higher productivity, Desalination, 134 (2001) 129–158.
  40. Y. Wang, N. Lior, Thermoeconomic analysis of a lowtemperature multi-effect thermal desalination system coupled with an absorption heat pump, Energy, 36 (2011) 3878–3887.
  41. B. Rahimi, Z. Marvi, A.A. Alamolhoda, M. Abbaspour, H.T. Chua, An industrial application of low-grade sensible waste heat driven seawater desalination: a case study, Desalination, 470 (2019) 114055, doi: 10.1016/j.desal.2019.06.021.
  42. M. Alsehli, M. Alzahrani, J.K. Choi, A novel design for solar integrated multi-effect distillation driven by sensible heat and alternate storage tanks, Desalination, 468 (2019) 114061, doi: 10.1016/j.desal.2019.07.001.