References

  1. L. Mabuza, N. Sonnenberg, N. Marx-Pienaar, Natural versus synthetic dyes: consumers’ understanding of apparel coloration and their willingness to adopt sustainable alternatives, Resour. Conserv. Recycl. Adv., 18 (2023) 200146, doi: 10.1016/j.rcradv.2023.200146.
  2. H.B. Slama, A.C. Bouket, Z. Pourhassan, F.N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova, P. Golińska, L. Belbahri, Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods, Appl. Sci., 11 (2021) 6255, doi: 10.3390/app11146255.
  3. M.A. Ahmed, A.S. Al-Khalifa, D.M. Al-Nouri, M.F.S. El-Din, Dietary intake of artificial food color additives containing food products by school-going children, Saudi J. Biol. Sci., 28 (2021) 27–34.
  4. S. Sahnoun, M. Boutahala, Adsorption removal of tartrazine by chitosan/polyaniline composite: kinetics and equilibrium studies, Int. J. Biol. Macromol., 114 (2018) 1345–1353.
  5. L. Aoudjit, P.M. Martins, F. Madjene, D.Y. Petrovykh, S. Lanceros-Mendez, Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor, J. Hazard. Mater., 344 (2018) 408–416.
  6. K.B. Errahmani, O. Benhabiles, S. Bellebia, Z. Bengharez, M. Goosen, H. Mahmoudi, Photocatalytic nanocomposite polymer-TiO2 membranes for pollutant removal from wastewater, Catalysts, 11 (2021) 402, doi: 10.3390/catal11030402.
  7. G. Donoso, J.R. Dominguez, T. González, S. Correia, E.M. Cuerda-Correa, Electrochemical and sonochemical advanced oxidation processes applied to tartrazine removal. Influence of operational conditions and aqueous matrix, Environ. Res., 202 (2021) 111517, doi: 10.1016/j.envres.2021.111517.
  8. A.V. Russo, B.G. Merlo, S.E. Jacobo, Adsorption and catalytic degradation of Tartrazine in aqueous medium by a Fe-modified zeolite, Cleaner Eng. Technol., 4 (2021) 100211, doi: 10.1016/j.clet.2021.100211.
  9. R. Scott, P. Mudimbi, M.E. Miller, M. Magnuson, S. Willison, R. Phillips, W.F. Harper Jr., Advanced oxidation of tartrazine and brilliant blue with pulsed ultraviolet light emitting diodes, Water Environ. Res., 89 (2017) 24–31.
  10. M. Assassi, F. Madjene, S. Harchouche, H. Boulfiza, Modeling and optimization of the photocatalytic degradation of Tartrazine in aqueous solution, Acta Period. Technol., 52 (2021) 133–145.
  11. S.K. Al-Dawery, Photo-catalyst degradation of tartrazine compound in wastewater using TiO2 and UV light, J. Eng. Sci. Technol., 8 (2013) 683–691.
  12. F. Parolin, U.M. Nascimento, E.B. Azevedo, Microwaveenhanced UV/H2O2 degradation of an azo dye (tartrazine): optimization, colour removal, mineralization and ecotoxicity, Environ. Technol., 34 (2013) 1247–1253.
  13. S.H. Tabrizi, B. Tanhaei, A. Ayati, S. Ranjbari, Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation, Environ. Res., 204 (2022) 111965, doi: 10.1016/j. envres.2021.111965.
  14. H.I. Albroomi, M.A. Elsayed, A. Baraka, M.A. Abdelmaged, Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones, Appl. Water Sci., 7 (2017) 2063–2074.
  15. E.H. Khader, T.J. Mohammed, T.M. Albayati, Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution, Desal. Water Treat., 229 (2021) 372–383.
  16. S. Perveen, R. Nadeem, F. Nosheen, L. Tongxiang, T. Anwar, Synthesis of biochar-supported zinc oxide and graphene oxide/zinc oxide nanocomposites to remediate tartrazine dye from aqueous solution using fixed-bed column reactor, Appl. Nanosci., 12 (2022) 1491–1505.
  17. S. Perveen, R. Nadeem, F. Nosheen, M.I. Asjad, J. Awrejcewicz, T. Anwar, Biochar-mediated zirconium ferrite nanocomposites for tartrazine dye removal from textile wastewater, Nanomaterials, 12 (2022) 2828, doi: 10.3390/nano12162828.
  18. M. Ur Rehman, A. Manan, M. Uzair, A.S. Khan, A. Ullah, A.S. Ahmad, A.H. Wazir, I. Qazi, M.A. Khan, Physicochemical characterization of Pakistani clay for adsorption of methylene blue: kinetic, isotherm and thermodynamic study, Mater. Chem. Phys., 269 (2021) 124722, doi: 10.1016/j.matchemphys.2021.124722.
  19. A. Haleem, M. Javaid, R.P. Singh, S. Rab, R. Suman, Applications of nanotechnology in medical field, Global Health J., 7 (2023) 70–77.
  20. R.F. Abbas, M.J.M. Hassan, A.M. Rheima, Magnetic solid phase extraction for determination of dyes in food and water samples, Indones. J. Chem., 4 (2023) 1181–1198.
  21. A. Hajighasemkhan, L. Taghavi, E. Moniri, A.H. Hassani, H.A. Panahi, Adsorption kinetics and isotherms study of 2,4-dichlorophenoxyacetic acid by 3dimensional/graphene oxide/magnetic from aquatic solutions, Int. J. Environ. Anal. Chem., 102 (2022) 1171–1191.
  22. M. Shafaati, M. Miralinaghi, R.H.S.M. Shirazi, E. Moniri, The use of chitosan/Fe3O4 grafted graphene oxide for effective adsorption of rifampicin from water samples, Res. Chem. Intermed., 46 (2020) 5231–5254.
  23. A.F. Kamil, H.I. Abdullah, A.M. Rheima, W.M. Khamis, Modification of hummers presses for synthesis graphene oxide nano-sheets and graphene oxide/Ag nanocomposites, J. Ovonic Res., 17 (2021) 253–259.
  24. A.F. Kamil, H.I. Abdullah, A.M. Rheima, Fabrication of dyesensitized solar cells and synthesis of CuNiO2 nanostructures using a photo-irradiation technique, J. Nanostruct., 12 (2022) 144–159.
  25. T. Taher, A. Munandar, N. Mawaddah, M. Syamsuddin Wisnubroto, P.M.S.B.N. Siregar, N.R. Palapa, A. Lesbani, Y.G. Wibowo, Synthesis and characterization of montmorillonite – mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal, Inorg. Chem. Commun., 147 (2023) 110231, doi: 10.1016/j.inoche.2022.110231.
  26. R.F. Abbas, H.K. Hami, N.I. Mahdi, A.A. Waheb, Removal of Eriochrome Black T dye by using Al2O3 nanoparticles: central composite design, isotherm and error analysis, Iran. J. Sci. Technol., Trans. A: Sci., 44 (2020) 993–1000.
  27. P.T. Lan Huong, N.T. Huyen, C.D. Giang, N. Tu, V.N. Phan, N.V. Quy, T.Q. Huy, D.T.M. Hue, H.D. Chinh, A.-T. Le, Facile synthesis and excellent adsorption property of GO-Fe3O4 magnetic nanohybrids for removal of organic dyes, J. Nanosci. Nanotechnol., 16 (2016) 9544–9556.
  28. M.S. Raghu, K. Yogesh Kumar, M.K. Prashanth, B.P. Prasanna, R. Vinuth, C.B. Pradeep Kumar, Adsorption and antimicrobial studies of chemically bonded magnetic graphene oxide-Fe3O4 nanocomposite for water purification, J. Water Process Eng., 17 (2017) 22–31.
  29. A.-S. Al-Sherbini, M. Bakr, I. Ghoneim, M. Saad, Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene, J. Adv. Res., 8 (2017) 209–215.
  30. H. Jeddi, R. Rasuli, M.M. Ahadian, B. Mehrabi, Carbon blackintercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor, J. Nanostruct., 9 (2019) 639–649.
  31. L. Yu, J. Chen, Z. Liang, W. Xu, L. Chen, D. Ye, Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst, Sep. Purif. Technol., 171 (2016) 80–87.
  32. M. Jannatin, G. Supriyanto, Abdulloh, W.A.W. Ibrahim, N.K. Rukman, Graphene oxide from bagasse/magnetite composite: preparation and characterization, IOP Conf. Ser.: Earth Environ. Sci., 217 (2019) 012007, doi: 10.1088/1755-1315/217/1/012007.
  33. J.J. Schuster, S. Will, A. Leipertz, A. Braeuer, Deconvolution of Raman spectra for the quantification of ternary high-pressure phase equilibria composed of carbon dioxide, water and organic solvent, J. Raman Spectrosc., 45 (2014) 246–252.
  34. K. Movlaee, M.R. Ganjali, P. Norouzi, G. Neri, Ironbased nanomaterials/graphene composites for advanced electrochemical sensors, Nanomaterials (Basel), 7 (2017) 406, doi: 10.3390/nano7120406.
  35. Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Synthesis of Fe3O4 nanoparticles and their magnetic properties, Procedia Eng., 27 (2012) 632–637.
  36. A. Mayeen, L.K. Shaji, A.K. Nair, N. Kalarikkal, Chapter 12 – Morphological Characterization of Nanomaterials, S.M. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas, Eds., Characterization of Nanomaterials: Advances and Key Technologies, Micro and Nano Technologies, Woodhead Publishing, 2018, pp. 335–364.
  37. A. Raza, U. Qumar, J. Hassan, M. Ikram, A. Ul-Hamid, J. Haider, M. Imran, S. Ali, A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sonophotocatalytic behavior, Appl. Nanosci., 10 (2020) 3875–3899.
  38. A.A. Issa, Y.S. Al-Degs, K. Mashal, R.Z. Al Bakain, Fast activation of natural biomasses by microwave heating, J. Ind. Eng. Chem., 21 (2015) 230–238.
  39. P. Sharma, H. Kaur, Sugarcane bagasse for the removal of Erythrosin B and methylene blue from aqueous waste, Appl. Water Sci., 1 (2011) 135–145.
  40. B. Priyadarshini, T. Patra, T.R. Sahoo, An efficient and comparative adsorption of Congo red and Trypan blue dyes on MgO nanoparticles: kinetics, thermodynamics and isotherm studies, J. Magnesium Alloys, 9 (2021) 478–488.
  41. H. Ouassif, E.M. Moujahid, R. Lahkale, R. Sadik, F.Z. Bouragba, E.M. Sabbar, M. Diouri, Zinc-aluminum layered double hydroxide: high efficient removal by adsorption of tartrazine dye from aqueous solution, Surf. Interfaces, 18 (2020) 100401, doi: 10.1016/j.surfin.2019.100401.
  42. S. Banerjee, M.C. Chattopadhyaya, Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low-cost agricultural by-product, Arabian J. Chem., 10 (2017) S1629–S1638.
  43. N.F. Al-Harby, E.F. Albahly, N.A. Mohamed, Kinetics, isotherm and thermodynamic studies for efficient adsorption of Congo red dye from aqueous solution onto novel cyanoguanidinemodified chitosan adsorbent, Polymers, 13 (2021) 4446, doi: 10.3390/polym13244446.
  44. M. Ghobadi, M. Gharabaghi, H. Abdollahi, Z. Boroumand, M. Moradian, MnFe2O4-graphene oxide magnetic nanoparticles as a high-performance adsorbent for rare earth elements: synthesis, isotherms, kinetics, thermodynamics and desorption, J. Hazard. Mater., 351 (2018) 308–316.
  45. Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis, J. Mol. Liq., 277 (2019) 646–648.
  46. Y. Miyah, A. Lahrichi, M. Idrissi, S. Boujraf, H. Taouda, F. Zerrouq, Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite, J. Assoc. Arab Univ. Basic Appl. Sci., 23 (2017) 20–28.
  47. G.Y. Abate, A.N. Alene, A.T. Habte, D.M. Getahun, Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low-cost bio-adsorbent, Environ. Res., 9 (2020) 1–13, doi: 10.1186/s40068-020-00191-4.
  48. A. Demir Delil, O. Gülçiçek, N. Gören, Optimization of adsorption for the removal of cadmium from aqueous solution using Turkish coffee grounds, Int. J. Environ. Res., 13 (2019) 861–878.
  49. S.S. Kadhim, R.F. Abbas, S.S. Jaafar, Removal of Cr(VI) from aqueous solution by using polyaniline/polycarbonates nanofibers composite: central composite design, isotherm, and error analysis, Desal. Water Treat., 229 (2021) 343–351.
  50. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 3 (2012) 38–45.
  51. E.C. Lima, A.A. Gomes, H.N. Tran, Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (ΔS° and ΔH°), J. Mol. Liq., 311 (2020) 113315, doi: 10.1016/j.molliq.2020.113315.
  52. Sumanjit, S. Rani, R.K. Mahajan, Equilibrium, kinetics and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia, Arabian J. Chem., 9 (2016) S1464–S1477.
  53. E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using pseudo-first-order and pseudo-second-order rate laws: a review, Cleaner Eng. Technol., 1 (2020) 100032, doi: 10.1016/j.clet.2020.100032.
  54. M.A. Hubbe, S. Azizian, S. Douven, Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review, BioResources, 14 (2019) 7582–7626.
  55. M.M. Merza, R.A. Al-Bayati, M.J.M. Hassan, Investigation the adsorption properties of the Iraqi siliceous rocks composite towards some heavy metal, Egypt. J. Chem., 64 (2021) 6203–6212.
  56. D. Maiti, S. Mukhopadhyay, P.S. Devi, Evaluation of mechanism on selective, rapid, and superior adsorption of Congo red by reusable mesoporous α-Fe2O3 nanorods, ACS Sustainable Chem. Eng., 5 (2017) 11255–11267.
  57. S. Ranjbari, A. Ayati, B. Tanhaei, A. Al-Othman, F. Karimi, The surfactant-ionic liquid bi-functionalization of chitosan beads for their adsorption performance improvement toward Tartrazine, Environ. Res., 204 (2022) 111961, doi: 10.1016/j.envres.2021.111961.
  58. S. Perveen, R. Nadeem, F. Nosheen, M.I. Asjad, J. Awrejcewicz, T. Anwar, Biochar-mediated zirconium ferrite nanocomposites for tartrazine dye removal from textile wastewater, Nanomaterials, 12 (2022) 2828, doi: 10.3390/nano12162828.
  59. R.K. Gautam, S. Banerjee, M.A. Sanroman, M.C. Chattopadhyaya, Synthesis of copper coordinated dithiooxamide metal organic framework and its performance assessment in the adsorptive removal of tartrazine from water, J. Environ. Chem. Eng., 5 (2017) 328–340.
  60. S. Banerjee, M.C. Chattopadhyaya, Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low-cost agricultural by-product, Arabian J. Chem., 10 (2017) S1629–S1638.
  61. J. Goscianska, R. Pietrzak, Removal of tartrazine from aqueous solution by carbon nanotubes decorated with silver nanoparticles, Catal. Today, 249 (2015) 259–264.
  62. H.O. Chukwuemeka-Okorie, F.K. Ekuma, K.G. Akpomie, J.C. Nnaji, A.G. Okereafor, Adsorption of tartrazine and sunset yellow anionic dyes onto activated carbon derived from cassava sievate biomass, Appl. Water Sci., 11 (2021) 1–8.