References

  1. J.N. Galloway, W. Winiwarter, A. Leip, A.M. Leach, A. Bleeker, J.W. Erisman, Nitrogen footprints: past, present and future, Environ. Res. Lett., 9 (2014) 115003, doi: 10.1088/1748-9326/9/11/115003.
  2. B. Singh, E. Craswell, Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem, SN Appl. Sci., 3 (2021) 518–542, doi: 10.1007/s42452-021-04521-8.
  3. B. Bishayee, R.P. Chatterjee, B. Ruj, S. Chakrabortty, J. Nayak, Strategic management of nitrate pollution from contaminated water using viable adsorbents: an economic assessment-based review with possible policy suggestions, J. Environ. Manage., 303 (2022) 114081, doi: 10.1016/j.jenvman.2021.114081.
  4. Z. Li, W. Xie, F. Yao, A. Du, Q. Wang, Z. Guo, H. Gu, Comprehensive electrocatalytic degradation of tetracycline in wastewater by electrospun perovskite manganite nanoparticles supported on carbon nanofibers, Adv. Compos. Hybrid Mater., 5 (2022) 2092–2105, doi: 10.1007/s42114-022-00550-y.
  5. P.L. Meena, K. Poswal, A.K. Surela, J.K. Saini, Synthesis of graphitic carbon nitride/zinc oxide (g-C3N4/ZnO) hybrid nanostructures and investigation of the effect of ZnO on the photodegradation activity of g-C3N4 against the Brilliant Cresyl Blue (BCB) dye under visible light irradiation, Adv. Compos. Hybrid Mater., 6 (2023) 16, doi: 10.1007/s42114-022-00577-1.
  6. J. Yuan, Y. Amano, M. Machida, Surface modified mechanism of activated carbon fibers by thermal chemical vapor deposition and nitrate adsorption characteristics in aqueous solution, Water Res., 580 (2019) 123710, doi: 10.1016/j.colsurfa.2019.123710.
  7. T.F. Beltrame, D. Carvalho, L. Marder, M.A. Ulla, F.A. Marchesini, A.M. Bernardes, Comparison of different electrode materials for the nitrate electrocatalytic reduction in a dual-chamber cell, Water Res., 8 (2020) 104210, doi: 10.1016/j.jece.2020.104120.
  8. Z.B. Mokhtari-Hosseini, G.R. Bikhabar, T.S. Zare, Nitrate removal from aqueous solution: Screening of variables and optimization, Adv. Environ. Technol.,1 (2023) 73–83, doi: 10.22104/AET.2023.5653.1596.
  9. D.M. Martin, M. Faccini, M.A. García, D. Amantia, Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers, J. Environ. Chem. Eng., 6 (2018) 236–245, doi: 10.1016/j.jece.2017.11.073.
  10. J. Du, H. Xiong, Z. Dong, X. Yang, L. Zhao, J. Yang, Ethylenediamine and pentaethylene hexamine modified bamboo sawdust by radiation grafting and their adsorption behavior for phosphate, Appl. Sci., 11 (2021) 7854–7868, doi: 10.3390/app11177854.
  11. H. Dong, C.S. Shepsko, M. German, A.K. Sen Gupta, Hybrid nitrate selective resin (NSR-NanoZr) for simultaneous selective removal of nitrate and phosphate (or fluoride) from impaired water sources, Water Res., 8 (2020) 103846, doi: 10.1016/j.jece.2020.103846.
  12. M. Amarine, B. Lekhlif, E.M. Mliji, J. Echaabi, Nitrate removal from groundwater in Casablanca region (Morocco) by electrocoagulation, Groundwater Sustainable Dev., 11 (2020) 100452, doi: 10.1016/j.gsd.2020.100452.
  13. R.S. Jasna, R. Gandhimathi, A. Lavanya, S.T. Ramesh, An integrated electrochemical–adsorption system for removal of nitrate from water, J. Environ. Chem. Eng., 8 (2020) 104387, doi: 10.1016/j.jece.2020.104387.
  14. S. Yang, C. Shi, K. Qu, Z. Sun, H. Li, B. Xu, Z. Huang, Z. Guo, Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification, Carbon Lett., 33 (2023) 2063–2074, doi: 10.1007/s42823-023-00540-0.
  15. F. Zhang, M. Lian, A. Alhadhrami, M. Huang, B. Li, G.A.M. Mersal, M.M. Ibrahim, M. Xu, Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water, Adv. Compos. Hybrid Mater., 5 (2022) 1852–1864, doi: 10.1007/s42114-022-00476-5.
  16. H. Zhou, Y. Tan, W. Gao, Y. Zhang, Y. Yang, Selective nitrate removal from aqueous solutions by a hydrotalcite-like absorbent FeMgMn-LDH, Sci. Rep. 10, (2020) 16126–16136, doi: 10.1038/s41598-020-72845-3.
  17. M.M. Sabzehmeidani, M. Ghaedi, Chapter 5 – Adsorbents Based on Nanofibers, Interface Science and Technology, 33 (2021) 389–443, doi: 10.1016/B978-0-12-818805-7.00005-9.
  18. A. Gul, N.G. Khaligh, N.M. Julkapli, Surface modification of carbon-based nanoadsorbents for the advanced wastewater treatment, J. Mol. Struct., 1235 (2021) 130148, doi: 10.1016/j.molstruc.2021.130148.
  19. B.R. Broujeni, A. Nilchi, Preparation and characterization of polyacrylonitrile nanofiber adsorbent modified with 6-amino-1-hexanethiol hydrochloride for the adsorption of thorium(IV) ion from aqueous solution, Desal. Water Treat., 133 (2018) 122–133, doi: 10.5004/dwt.2018.23001.
  20. Q. Hu, H. Liu, Z. Zhang, Y. Xie, Nitrate removal from aqueous solution using polyaniline modified activated carbon: optimization and characterization, Water Res., 309 (2020) 113057, doi: 10.1016/j.molliq.2020.113057.
  21. Z. Jamka, W. Mohammed, Assessment of the feasibility of modified chitosan beads for the adsorption of nitrate from an aqueous solution, J. Ecol. Eng., 24 (2023) 265–278, doi: 10.12911/22998993/156886.
  22. G.S. Bohart, E.Q. Adams, Some aspects of the behavior of charcoal with respect to chlorine, J. Am. Chem. Soc., 42 (1920) 523–544, doi: 10.1021/ja01448a018.