References
- J.N. Galloway, W. Winiwarter, A. Leip, A.M. Leach,
A. Bleeker, J.W. Erisman, Nitrogen footprints: past,
present and future, Environ. Res. Lett., 9 (2014) 115003,
doi: 10.1088/1748-9326/9/11/115003.
- B. Singh, E. Craswell, Fertilizers and nitrate pollution of
surface and ground water: an increasingly pervasive global
problem, SN Appl. Sci., 3 (2021) 518–542, doi: 10.1007/s42452-021-04521-8.
- B. Bishayee, R.P. Chatterjee, B. Ruj, S. Chakrabortty, J. Nayak,
Strategic management of nitrate pollution from contaminated
water using viable adsorbents: an economic assessment-based
review with possible policy suggestions, J. Environ. Manage.,
303 (2022) 114081, doi: 10.1016/j.jenvman.2021.114081.
- Z. Li, W. Xie, F. Yao, A. Du, Q. Wang, Z. Guo, H. Gu, Comprehensive
electrocatalytic degradation of tetracycline in wastewater
by electrospun perovskite manganite nanoparticles
supported on carbon nanofibers, Adv. Compos. Hybrid Mater.,
5 (2022) 2092–2105, doi: 10.1007/s42114-022-00550-y.
- P.L. Meena, K. Poswal, A.K. Surela, J.K. Saini, Synthesis of
graphitic carbon nitride/zinc oxide (g-C3N4/ZnO) hybrid
nanostructures and investigation of the effect of ZnO on the
photodegradation activity of g-C3N4 against the Brilliant Cresyl
Blue (BCB) dye under visible light irradiation, Adv. Compos.
Hybrid Mater., 6 (2023) 16, doi: 10.1007/s42114-022-00577-1.
- J. Yuan, Y. Amano, M. Machida, Surface modified mechanism
of activated carbon fibers by thermal chemical vapor
deposition and nitrate adsorption characteristics in aqueous
solution, Water Res., 580 (2019) 123710, doi: 10.1016/j.colsurfa.2019.123710.
- T.F. Beltrame, D. Carvalho, L. Marder, M.A. Ulla, F.A. Marchesini,
A.M. Bernardes, Comparison of different electrode materials
for the nitrate electrocatalytic reduction in a dual-chamber cell,
Water Res., 8 (2020) 104210, doi: 10.1016/j.jece.2020.104120.
- Z.B. Mokhtari-Hosseini, G.R. Bikhabar, T.S. Zare, Nitrate
removal from aqueous solution: Screening of variables
and optimization, Adv. Environ. Technol.,1 (2023) 73–83,
doi: 10.22104/AET.2023.5653.1596.
- D.M. Martin, M. Faccini, M.A. García, D. Amantia, Highly
efficient removal of heavy metal ions from polluted water
using ion-selective polyacrylonitrile nanofibers, J. Environ.
Chem. Eng., 6 (2018) 236–245, doi: 10.1016/j.jece.2017.11.073.
- J. Du, H. Xiong, Z. Dong, X. Yang, L. Zhao, J. Yang,
Ethylenediamine and pentaethylene hexamine modified
bamboo sawdust by radiation grafting and their adsorption
behavior for phosphate, Appl. Sci., 11 (2021) 7854–7868,
doi: 10.3390/app11177854.
- H. Dong, C.S. Shepsko, M. German, A.K. Sen Gupta, Hybrid
nitrate selective resin (NSR-NanoZr) for simultaneous
selective removal of nitrate and phosphate (or fluoride)
from impaired water sources, Water Res., 8 (2020) 103846,
doi: 10.1016/j.jece.2020.103846.
- M. Amarine, B. Lekhlif, E.M. Mliji, J. Echaabi, Nitrate removal
from groundwater in Casablanca region (Morocco) by
electrocoagulation, Groundwater Sustainable Dev., 11 (2020)
100452, doi: 10.1016/j.gsd.2020.100452.
- R.S. Jasna, R. Gandhimathi, A. Lavanya, S.T. Ramesh, An
integrated electrochemical–adsorption system for removal of
nitrate from water, J. Environ. Chem. Eng., 8 (2020) 104387,
doi: 10.1016/j.jece.2020.104387.
- S. Yang, C. Shi, K. Qu, Z. Sun, H. Li, B. Xu, Z. Huang, Z. Guo,
Electrostatic self-assembly cellulose nanofibers/MXene/nickel
chains for highly stable and efficient seawater evaporation and
purification, Carbon Lett., 33 (2023) 2063–2074, doi: 10.1007/s42823-023-00540-0.
- F. Zhang, M. Lian, A. Alhadhrami, M. Huang, B. Li,
G.A.M. Mersal, M.M. Ibrahim, M. Xu, Laccase immobilized
on functionalized cellulose nanofiber/alginate composite
hydrogel for efficient bisphenol A degradation from polluted
water, Adv. Compos. Hybrid Mater., 5 (2022) 1852–1864,
doi: 10.1007/s42114-022-00476-5.
- H. Zhou, Y. Tan, W. Gao, Y. Zhang, Y. Yang, Selective nitrate
removal from aqueous solutions by a hydrotalcite-like
absorbent FeMgMn-LDH, Sci. Rep. 10, (2020) 16126–16136,
doi: 10.1038/s41598-020-72845-3.
- M.M. Sabzehmeidani, M. Ghaedi, Chapter 5 – Adsorbents
Based on Nanofibers, Interface Science and Technology,
33 (2021) 389–443, doi: 10.1016/B978-0-12-818805-7.00005-9.
- A. Gul, N.G. Khaligh, N.M. Julkapli, Surface modification of
carbon-based nanoadsorbents for the advanced wastewater
treatment, J. Mol. Struct., 1235 (2021) 130148, doi: 10.1016/j.molstruc.2021.130148.
- B.R. Broujeni, A. Nilchi, Preparation and characterization
of polyacrylonitrile nanofiber adsorbent modified with
6-amino-1-hexanethiol hydrochloride for the adsorption of
thorium(IV) ion from aqueous solution, Desal. Water Treat.,
133 (2018) 122–133, doi: 10.5004/dwt.2018.23001.
- Q. Hu, H. Liu, Z. Zhang, Y. Xie, Nitrate removal from aqueous
solution using polyaniline modified activated carbon:
optimization and characterization, Water Res., 309 (2020)
113057, doi: 10.1016/j.molliq.2020.113057.
- Z. Jamka, W. Mohammed, Assessment of the feasibility
of modified chitosan beads for the adsorption of nitrate
from an aqueous solution, J. Ecol. Eng., 24 (2023) 265–278,
doi: 10.12911/22998993/156886.
- G.S. Bohart, E.Q. Adams, Some aspects of the behavior of
charcoal with respect to chlorine, J. Am. Chem. Soc., 42 (1920)
523–544, doi: 10.1021/ja01448a018.