References

  1. Q. Ji, S. Tabassum, S. Hena, C.G. Silva, G. Yu, Z. Zhang, A review on the coal gasification wastewater treatment technologies: past, present and future outlook, J. Cleaner Prod., 126 (2016) 38–55.
  2. H. Zhou, C. Wei, F. Zhang, J. Liao, Y. Hu, H. Wu, Energy-saving optimization of coking wastewater treated by aerobic biotreatment integrating two-stage activated carbon adsorption, J. Cleaner Prod., 175 (2018) 467–476.
  3. X. Zhang, Y. Li, Y. He, D. Kong, B. Klein, S. Yin, H. Zhao, Co-pyrolysis characteristics of lignite and biomass and efficient adsorption of magnetic activated carbon prepared by co-pyrolysis char activation and modification for coking wastewater, Fuel, 324 (2022) 124816, doi: 10.1016/j.fuel.2022.124816.
  4. Z.-Y. Wu, W.-P. Zhu, Y. Liu, L.-L. Zhou, P.-X. Liu, J. Xu, An integrated biological-electrocatalytic process for highlyefficient treatment of coking wastewater, Bioresour. Technol., 339 (2021) 125584, doi: 10.1016/j.biortech.2021.125584.
  5. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review, J. Environ. Chem. Eng., 6 (2018) 4676–4697.
  6. V.L. Gopal, K. Chellapandian, Synthesis of hybrid framework of tenorite and octahedrally coordinated aluminosilicate for the robust adsorption of cationic and anionic dyes, Environ. Res., 220 (2023) 115111, doi: 10.1016/j.envres.2022.115111.
  7. M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural biowaste materials as potential sustainable precursors used for activated carbon production: a review, Renewable Sustainable Energy Rev., 46 (2015) 218–235.
  8. J. Guo, L. Zheng, Z. Li, X. Zhou, S. Cheng, Effects of various pyrolysis conditions and feedstock compositions on the physicochemical characteristics of cow manure-derived biochar, J. Cleaner Prod., 311 (2021) 127458, doi: 10.1016/j.jclepro.2021.127458.
  9. D. Xiao, Z. Hang, Q. Xiao, L. Jian, Optimization of Cd(II) removal from aqueous solution with modified corn straw biochar using Plackett–Burman design and response surface methodology, Desal. Water Treat., 70 (2017) 210–219.
  10. K. Michal, S. Bozena, U. Aleksandra, Changes of PAHs and C humic fractions in composts with sewage sludge and biochar amendment, Desal. Water Treat., 97 (2017) 234–243.
  11. K. Xiao, H. Liu, Y. Li, G. Yang, Y. Wang, H. Yao, Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption, Chem. Eng. J., 382 (2020) 122997, doi: 10.1016/j.cej.2019.122997.
  12. L. Esra, G. Belgin, K. Berkant, Adsorption of malachite green on Fe-modified biochar: influencing factors and process optimization, Desal. Water Treat., 74 (2017) 383–394.
  13. D.A. Usman, D.N. Noor, S.A. Noraishah, Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization times, Desal. Water Treat., 57 (2016) 7999–8006.
  14. D. Akhil, D. Lakshmi, A. Kartik, D.V.N. Vo, J. Arun, K.P. Gopinath, Production, characterization, activation and environmental applications of engineered biochar: a review, Environ. Chem. Lett., 19 (2021) 2261–2297.
  15. W. Xiang, X. Zhang, J. Chen, W. Zou, F. He, X. Hu, D.C.W. Tsang, Y.S. Ok, B. Gao, Biochar technology in wastewater treatment: a critical review, Chemosphere, 252 (2020) 126539, doi: 10.1016/j.chemosphere.2020.126539.
  16. T.G. Ambaye, M. Vaccari, E.D. van Hullebusch, A. Amrane, S. Rtimi, Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater, Int. J. Environ. Sci. Technol., 18 (2021) 3273–3294.
  17. N. Cheng, B. Wang, P. Wu, X. Lee, Y. Xing, M. Chen, B. Gao, Adsorption of emerging contaminants from water and wastewater by modified biochar: a review, Environ. Pollut., 273 (2021) 116448, doi: 10.1016/j.envpol.2021.116448.
  18. H.O. Chahinez, O. Abdelkader, Y. Leila, H.N. Tran, One-stage preparation of palm petiole-derived biochar: characterization and application for adsorption of crystal violet dye in water, Environ. Technol. Innovation, 19 (2020) 100872, doi: 10.1016/j.eti.2020.100872.
  19. B. Li, Y. Zhang, J. Xu, Y. Mei, S. Fan, H. Xu, Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions, Chemosphere, 267 (2021) 129283, doi: 10.1016/j.chemosphere.2020.129283.
  20. R. Verma, Y.N. Singhbabu, P.N. Didwal, A.G. Nguyen, J. Kim, C.J. Park, Biowaste orange peel-derived mesoporous carbon as a cost-effective anode material with ultra-stable cyclability for potassium-ion batteries, Batteries Supercaps, 3 (2020) 1099–1111.
  21. M.S. Hafizuddin, C.L. Lee, K.L. Chin, P.S. H’ng, P.S. Khoo, U. Rashid, Fabrication of highly microporous structure activated carbon via surface modification with sodium hydroxide, Polymers, 13 (2021) 3954, doi: 10.3390/polym13223954.
  22. M.T. Vu, H.P. Chao, T. Van Trinh, T.T. Le, C.C. Lin, H.N. Tran, Removal of ammonium from groundwater using NaOHtreated activated carbon derived from corncob wastes: batch and column experiments, J. Cleaner Prod., 180 (2018) 560–570.
  23. N.S. Kumar, H.M. Shaikh, M. Asif, E.H. Al-Ghurabi, Engineered biochar from wood apple shell waste for high-efficient removal of toxic phenolic compounds in wastewater, Sci. Rep., 11 (2021) 2586, doi: 10.1038/s41598-021-82277-2.
  24. T. Cai, X. Liu, J. Zhang, B. Tie, M. Lei, Silicate-modified oiltea camellia shell-derived biochar: A novel and cost-effective sorbent for cadmium removal, J. Cleaner Prod., 281 (2021) 125390, doi: 10.1016/j.jclepro.2020.125390.
  25. P. Boguta, Z. Sokołowska, K. Skic, A. Tomczyk, Chemically engineered biochar – effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste, Fuel, 256 (2019) 115893, doi: 10.1016/j.fuel.2019.115893.
  26. Y. Liu, S.P. Sohi, F. Jing, J. Chen, Oxidative ageing induces change in the functionality of biochar and hydrochar: mechanistic insights from sorption of atrazine, Environ. Pollut., 249 (2019) 1002–1010.
  27. Z. Huang, L. Hu, Q. Zhou, Y. Guo, W. Tang, J. Dai, Effect of aging on surface chemistry of rice husk-derived biochar, Environ. Prog. Sustainable Energy, 37 (2018) 410–417.
  28. D. Wu, F. Li, Q. Chen, M. Wu, W. Duan, Q. Zhao, B. Pan, B. Xing, Mediation of rhodamine B photodegradation by biochar, Chemosphere, 256 (2020) 127082, doi: 10.1016/j.chemosphere.2020.127082.
  29. W. Yu, F. Lian, G. Cui, Z. Liu, N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution, Chemosphere, 193 (2018) 8–16.
  30. C. Jiang, X. Wang, D. Qin, W. Da, B. Hou, C. Hao, J. Wu, Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes, J. Hazard. Mater., 369 (2019) 50–61.
  31. Q. Yang, P. Wu, J. Liu, S. Rehman, Z. Ahmed, B. Ruan, N. Zhu, Batch interaction of emerging tetracycline contaminant with novel phosphoric acid activated corn straw porous carbon: adsorption rate and nature of mechanism, Environ. Res., 181 (2020) 108899, doi: 10.1016/j.envres.2019.108899.
  32. X. Li, J. Shi, X. Luo, Enhanced adsorption of rhodamine B from water by Fe-N co-modified biochar: preparation, performance, mechanism and reusability, Bioresour. Technol., 343 (2022) 126103, doi: 10.1016/j.biortech.2021.126103.
  33. P. Liao, S. Yuan, W. Xie, W. Zhang, M. Tong, K. Wang, Adsorption of nitrogen-heterocyclic compounds on bamboo charcoal: kinetics, thermodynamics, and microwave regeneration, J. Colloid Interface Sci., 390 (2013) 189–195.
  34. D. Balarak, M. Baniasadi, S.M. Lee, M.L. Shim, Ciprofloxacin adsorption onto Azolla filiculoides activated carbon from aqueous solutions, Desal. Water Treat., 218 (2021) 444–453.
  35. D. Balarak, A.H. Mahvi, M.J. Shim, S.M. Lee, Adsorption of ciprofloxacin from aqueous solution onto synthesized NiO: isotherm, kinetic and thermodynamic studies, Desal. Water Treat., 212 (2021) 390–400.
  36. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
  37. S. Parimal, M. Prasad, U. Bhaskar, Prediction of equilibrium sorption isotherm: comparison of linear and non-linear methods, Ind. Eng. Chem. Res., 49 (2010) 2882–2888.
  38. M.E. de Oliveira Ferreira, B.G. Vaz, C.E. Borba, C.G. Alonso, I.C. Ostroski, Modified activated carbon as a promising adsorbent for quinoline removal, Microporous Mesoporous Mater., 277 (2019) 208–216.
  39. F.K. Mostafapour, M. Yilmaz, A.H. Mahvi, A. Younesi, F. Ganji, D. Balarak, Adsorptive removal of tetracycline from aqueous solution by surfactant-modified zeolite: equilibrium, kinetics and thermodynamics, Desal. Water Treat., 247 (2022) 216–228.
  40. F.K. Mostafapour, A.H. Mahvi, A.D. Khatibi, M.K. Saloot, N. Mohammadzadeh, D. Balarak, Adsorption of lead(II) using bioadsorbent prepared from immobilized Gracilaria corticata algae: thermodynamics, kinetics and isotherm analysis, Desal. Water Treat., 265 (2022) 103–113.
  41. J.H. Kim, X. Ma, A. Zhou, C. Song, Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism, Catal. Today, 111 (2006) 74–83.
  42. W. Kang, Y. Cui, Y. Yang, M. Guo, Z. Zhao, X. Wang, X. Liu, Preparation of nitrogen-doped hollow carbon nanosphere/graphene composite aerogel for efficient removal of quinoline from wastewater, J. Hazard. Mater., 417 (2021) 126160, doi: 10.1016/j.jhazmat.2021.126160.
  43. D. Zhu, H. Jiang, L. Zhang, X. Zheng, H. Fu, M. Yuan, H. Chen, R. Li, Aqueous phase hydrogenation of quinoline to decahydroquinoline catalyzed by ruthenium nanoparticles supported on glucose-derived carbon spheres, ChemCatChem, 6 (2014) 2954–2960.
  44. S. Yu, X. Wang, Y. Ai, X. Tan, T. Hayat, W. Hu, X. Wang, Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides, J. Mater. Chem., A, 4 (2016) 5654–5662.
  45. D. Yang, J. Li, L. Luo, R. Deng, Q. He, Y. Chen, Exceptional levofloxacin removal using biochar-derived porous carbon sheets: mechanisms and density-functional-theory calculation, Chem. Eng. J., 387 (2020) 124103, doi: 10.1016/j.cej.2020.124103.
  46. T.J. Dines, L.D. MacGregor, C.H. Rochester, IR spectroscopic investigation of the interaction of quinoline with acidic sites on oxide surfaces, Langmuir, 18 (2002) 2300–2308.
  47. L. Zhang, X. Wang, Y. Xue, X. Zeng, H. Chen, R. Li, S. Wang, Cooperation between the surface hydroxyl groups of Ru–SiO2@mSiO2 and water for good catalytic performance for hydrogenation of quinoline, Catal. Sci. Technol., 4 (2014) 1939–1948.
  48. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M.A.H. Johir, K. Sornalingam, Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water, Chem. Eng. J., 311 (2017) 348–358.
  49. K. Jeyasubramanian, B. Thangagiri, A. Sakthivel, R. Dhaveethu, J. Seenivasan, S. Vallinayagam, P. Madhavan, D. Malathi, A complete review on biochar: production, property, multifaceted applications, interaction mechanism and computational approach, Fuel, 292 (2021) 120243, doi: 10.1016/j.fuel.2021.120243.
  50. L. Liu, Z. Yang, F. Zhao, Z. Chai, W. Yang, H. Xiang, Z. Lin, Manganese doping of hematite enhancing oxidation and bidentate-binuclear complexation during As(III) remediation: experiments and DFT calculation, Chem. Eng. J., 471 (2023) 144758, doi: 10.1016/j.cej.2023.144758.
  51. S. Zhao, Y. Zhang, DFT study on the chemisorption and reforming of naphthalene over biochar: the detailed mechanism of carbon deposition and hydrogen production, Fuel, 332 (2023) 126144, doi: 10.1016/j.fuel.2022.126144.
  52. H. Zhao, Z. Wang, Y. Liang, T. Wu, Y. Chen, J. Yan, Y. Zhu, D. Ding, Adsorptive decontamination of antibiotics from livestock wastewater by using alkaline-modified biochar, Environ. Res., 226 (2023) 115676, doi: 10.1016/j.envres.2023.115676.