References

  1. R. Zhou, S. Lu, Y. Su, T.T. Li, T.G. Ma, H.J. Ren, Hierarchically fusiform CuO microstructures decorated
    with Fe3O4 nanoparticles as novel persulfate activators for 4-aminobenzenesulfonic acid degradation in aqueous solutions, J. Alloys Compd., 815 (2020) 152394, doi: 10.1016/j.jallcom.2019.152394.
  2. M. Veciana, J. Bräunig, A. Farhat, M.-L. Pype, S. Freguia, G. Carvalho, J. Keller, P. Ledezma, Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation, J. Hazard. Mater., 434 (2022) 128886, doi: 10.1016/j.jhazmat.2022.128886.
  3. M. Panizza, G. Cerisola, Removal of colour and COD from wastewater containing Acid Blue 22 by electrochemical oxidation, J. Hazard. Mater., 153 (2008) 83, doi: 10.1016/j.jhazmat.2007.08.023.
  4. J.Q. Bu, Z.W. Deng, H. Liu, T.H. Li, Y.J. Yang, S.A. Zhong, The degradation of sulfamilamide wastewater by threedimensional electrocatalytic oxidation system composed of activated carbon bimetallic particle electrode, J. Cleaner Prod., 324 (2021) 129256, doi: 10.1016/j.jclepro.2021.129256.
  5. Z.W. Jiang, Y.C. Wang, H. Yu, N. Yao, J.H. Shen, Y. Li, H. Zhang, X. Bai, Efficient degradation of
    N-nitrosopyrrolidine using CoFe-LDH/AC particle electrode via heterogeneous Fentonlike reaction, Chemosphere, 313 (2023) 137446, doi: 10.1016/j.chemosphere.2022.137446.
  6. J. Qiao, Y.Z. Xiong, Electrochemical oxidation technology: a review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants, J. Water Process Eng., 44 (2021) 102308, doi: 10.1016/j.jwpe.2021.102308.
  7. R. Fu, P.S. Zhang, Y.X. Jiang, L. Sun, X.H. Sun, Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: advance in mechanism, direct and indirect oxidation detection methods, Chemosphere, 311 (2023) 136993, doi: 10.1016/j.chemosphere.2022.136993.
  8. X. Wang, Z.L. Zhao, H.J. Wang, F. Wang, W.Y. Dong, Decomplexation of Cu-1-hydroxyethylidene-1,1-diphosphonic acid by a three-dimensional electrolysis system with activated biochar as particle electrodes, J. Environ. Sci., 124 (2023) 630, doi: 10.1016/j.jes.2021.11.036.
  9. N.N. Wang, L.W. Li, W.H. Zou, P. Wang, Performance and working mechanism of a coal fly ash-based particle electrode in the catalytic oxidation of ofloxacin in a three-dimensional electro-Fenton reactor, J. Environ. Chem. Eng., 11 (2023) 109561, doi: 10.1016/j.jece.2023.109561.
  10. R. Shokoohi, D. Nematollahi, M.R. Samarghandi, G. Azarian, Z. Latifi, Optimization of three-dimensional electrochemical process for degradation of methylene blue from aqueous environments using central composite design, Environ. Technol. Innovation, 18 (2020) 100711, doi: 10.1016/j.eti.2020.100711.
  11. W.Q. Sun, S.B. Zhou, Y.J. Sun, Y.H. Xu, H.L. Zheng, W-Ag-Ti@γ-Al2O3 particle electrodes for enhanced electrocatalytic pretreatment of coal chemical wastewater, J. Environ. Chem. Eng., 9 (2021) 104681, doi: 10.1016/j.jece.2020.104681.
  12. T. Wang, Y.Q. Song, H.J. Ding, Z. Liu, A. Baldwin, I. Wong, H. Li, C. Zhao, Insight into synergies between ozone and in-situ regenerated granular activated carbon particle electrodes in a three-dimensional electrochemical reactor for highly efficient nitrobenzene degradation, Chem. Eng. J., 394 (2020) 124852, doi: 10.1016/j.cej.2020.124852.
  13. Z.Y. Wang, B. Song, J.F. Li, X.L. Teng, Degradation of norfloxacin wastewater using kaolin/steel slag particle electrodes: performance, mechanism and pathway, Chemosphere, 270 (2021) 128652, doi: 10.1016/j.chemosphere.2020.128652.
  14. T. Wang, M.M. Ta, J. Guo, L.E. Liang, C. Bai, J. Zhang, H.J. Ding, Insight into the synergy between rice shell biochar particle electrodes and peroxymonosulfate in a three-dimensional electrochemical reactor for norfloxacin degradation, Sep. Purif. Technol., 304 (2023) 122354, doi: 10.1016/j.seppur.2022.122354.
  15. P. Asaithambi, R. Govindarajan, M.B. Yesuf, E. Alemayehu, Removal of color, COD and determination of power consumption from landfill leachate wastewater using an electrochemical advanced oxidation processes, Sep. Purif. Technol., 233 (2020) 115935, doi: 10.1016/j.seppur.2019.115935.
  16. Z.Z. Jia, X. Zhao, C.Y. Yu, Q. Wan, Y.F. Liu, Design and properties of Sn–Mn–Ce supported activated carbon composite as particle electrode for three-dimensionally electrochemical degradation of phenol, Environ. Technol. Innovation, 23 (2021) 101554, doi: 10.1016/j.eti.2021.101554.
  17. F. Amalina, S. Krishnan, A.W. Zularisam, M. Nasrullah, Recent advancement and applications of biochar technology as a multifunctional component towards sustainable environment, Environ. Dev., 46 (2023) 100819, doi: 10.1016/j.envdev.2023.100819.
  18. R. Kumar Mishra, D. Jaya Prasanna Kumar, A. Narula, S. Minnat Chistie, S. Ullhas Naik, Production and beneficial impact of biochar for environmental application: a review on types of feedstocks, chemical compositions, operating parameters, techno-economic study, and life cycle assessment, Fuel, 343 (2023) 127968, doi: 10.1016/j.fuel.2023.127968.
  19. S. Rawat, C.-T. Wang, C.-H. Lay, S. Hotha, T. Bhaskar, Sustainable biochar for advanced electrochemical/energy storage applications, J. Energy Storage, 63 (2023) 107115, doi: 10.1016/j.est.2023.107115.
  20. Q.K. Shi, S. Deng, Y.L. Zheng, Y.L. Du, L. Li, S.Z. Yang, G.X. Zhang, L. Du, G.F. Wang, M. Cheng, Y. Liu, The application of transition metal-modified biochar in sulfate radical based advanced oxidation processes, Environ. Res., 212 (2022) 113340, doi: 10.1016/j.envres.2022.113340.
  21. I.S. Marques, B. Jarrais, R. Ramos, V.K. Abdelkader-Fernandez, A. Yaremchenko, C. Freire, D.M. Fernandes, A.F. Peixoto, Nitrogen-doped biochar-supported metal catalysts: high efficiency in both catalytic transfer hydrogenation of furfural and electrocatalytic oxygen reactions, Catal. Today, 418 (2023) 114080, doi: 10.1016/j.cattod.2023.114080.
  22. Y.Z. Chai, M. Bai, A.W. Chen, X.Y. Xu, Z.H. Tong, J.Y. Yuan, L. Peng, J.H. Shao, J.H. Xiong, C. Peng, Upcycling contaminated biomass into metal-supported heterogeneous catalyst for electro-Fenton degradation of thiamethoxam: preparation, mechanisms, and implications, Chem. Eng. J., 453 (2023) 139814, doi: 10.1016/j.cej.2022.139814.
  23. L.H. Liu, R.H. Yu, S.X. Zhao, X.F. Cao, X.H. Zhang, S.Y. Bai, Heterogeneous Fenton system driven by ironloaded sludge biochar for sulfamethoxazole-containing wastewater treatment, J. Environ. Manage., 335 (2023) 117576, doi: 10.1016/j.jenvman.2023.117576.
  24. Z.L. Yin, J.W. Zhu, Z.R. Wang, Y.L. Liu, Z. Yang, W.B. Yang, Novel Fe/N co-doping biochar based electro-Fenton catalytic membrane enabling enhanced tetracycline removal and selfcleaning performance, J. Cleaner Prod., 402 (2023) 136731, doi: 10.1016/j.jclepro.2023.136731.
  25. F. Guo, Y.Y. Lou, Q. Yan, J.L. Xiong, J.H. Luo, C.K. Shen, D.V. Vayenas, Insight into the Fe-Ni/biochar composite supported three-dimensional electro-Fenton removal of electronic industry wastewater, J. Environ. Manage., 325 (2023) 116466, doi: 10.1016/j.jenvman.2022.116466.
  26. X. Zhang, X.D. Zhang, C.J. An, S.G. Wang, Electrochemistryenhanced peroxymonosulfate activation by CoAl-LDH@ biochar for simultaneous treatment of heavy metals and PAHs, Sep. Purif. Technol., 311 (2023) 123341, doi: 10.1016/j.seppur.2023.123341.
  27. S. Safarian, Performance analysis of sustainable technologies for biochar production: a comprehensive review, Energy Rep., 9 (2023) 4574, doi: 10.1016/j.egyr.2023.03.111.
  28. H.B. Han, J.H. Lyu, L.Y. Zhu, G.W. Wang, C. Ma, H.C. Ma, Fabrication of BN modified Ti/PbO2 electrodes with tunable hydrophobic characteristics and their electrocatalytic performance, J. Alloys Compd., 828 (2020) 154049, doi: 10.1016/j.jallcom.2020.154049.
  29. H.S. Lee, H.S. Shin, Competitive adsorption of heavy metals onto modified biochars: comparison of biochar properties and modification methods, J. Environ. Manage., 299 (2021) 113651, doi: 10.1016/j.jenvman.2021.113651.
  30. W. Lin, W. Lo, J. Li, Y. Wang, J. Tang, Z. Fong, In-situ XPS investigation of the X-ray-triggered decomposition of perovskites in ultrahigh vacuum condition, npj Mater. Degrad., 5 (2021), doi: 10.1038/s41529-021-00162-9.
  31. J.Y. Wang, M. Xu, X. Liang, Y. Zhang, D.D. Yang, L. Pan, W.Y. Fang, C.G. Zhu, F.W. Wang, Development of a novel 2D Ni-MOF derived NiO@C nanosheet arrays modified Ti/TiO2NTs/PbO2 electrode for efficient electrochemical degradation of salicylic acid wastewater, Sep. Purif. Technol., 263 (2021) 118368, doi: 10.1016/j.seppur.2021.118368.
  32. K.D. Zhu, X.R. Wang, J. Zhong, S.L. Wang, Hydro-thermal preparation of PbCO3/N-rGO nano-composites as positive additives to improve the performance of lead-acid batteries, J. Energy Storage, 53 (2022) 105102, doi: 10.1016/j.est.2022.105102.
  33. J.X. Zou, X.L. Peng, M. Li, Y. Xiong, B. Wang, F.Q. Dong, B. Wang, Electrochemical oxidation of COD from real textile wastewaters: kinetic study and energy consumption, Chemosphere, 171 (2017) 332, doi: 10.1016/j.chemosphere.2016.12.065.
  34. Y. Hu, F.Z. Yu, Z.T. Bai, Y.Q. Wang, H. Zhang, X.Y. Gao, Y.X. Wang, X. Li, Preparation of Fe-loaded needle coke particle electrodes and utilisation in three-dimensional electro-Fenton oxidation of coking wastewater, Chemosphere, 308 (2022) 136544, doi: 10.1016/j.chemosphere.2022.136544.
  35. O.P. Sahu, P.K. Chaudhari, Electrochemical treatment of sugar industry wastewater: COD and color removal, J. Electroanal. Chem., 739 (2015) 122, doi: 10.1016/j.jelechem.2014.11.037.
  36. H.J. Xiao, Y.J. Hao, J.L. Wu, X.Z. Meng, F. Feng, F.Q. Xu, S.Y. Luo, B. Jiang, Differentiating the reaction mechanism of three-dimensionally electrocatalytic system packed with different particle electrodes: electro-oxidation versus electro-Fenton, Chemosphere, 325 (2023) 138423, doi: 10.1016/j.chemosphere.2023.138423.