References
- M.T. Ali, H.E.S. Fath, P.R. Armstrong, A comprehensive technoeconomical
review of indirect solar desalination, Renewable
Sustainable Energy Rev., 15 (2011) 4187–4199.
- S. Rashidi, N. Rahbar, M.S. Valipour, J.A. Esfahani, Enhancement
of solar still by reticular porous media: experimental
investigation with exergy and economic analysis, Appl. Therm.
Eng., 130 (2018) 1341–1348.
- S. Rashidi, M. Bovand, J. Abolfazli Esfahani, Optimization of
partitioning inside a single slope solar still for performance
improvement, Desalination, 395 (2016) 79–91.
- N. Rahbar, A. Gharaiian, S. Rashidi, Exergy and economic
analysis for a double slope solar still equipped by thermoelectric
heating modules - an experimental investigation,
Desalination, 420 (2017) 106–113.
- G. Xie, L. Sun, Z. Mo, H. Liu, M. Du, Conceptual design and
experimental investigation involving a modular desalination
system composed of arrayed tubular solar stills, Appl. Energy,
179 (2016) 972–984.
- A. Ahsan, M. Imtiaz, U.A. Thomas, M. Azmi, A. Rahman,
N.N. Nik Daud, Parameters affecting the performance of a
low cost solar still, Appl. Energy, 114 (2014) 924–930.
- C.-H. Huang, T.-R. Chang, Determination of optimal inclination
function for external reflector of basin type still for maximum
distillate productivity, Energy, 141 (2017) 1728–1736.
- G. Xie, W. Chen, T. Yan, J. Tang, H. Liu, S. Cao, Three-effect
tubular solar desalination system with vacuum operation
under actual weather conditions, Energy Convers. Manage.,
205 (2020) 112371, doi: 10.1016/j.enconman.2019.112371.
- Y. Yang, Z. George Zhang, E.A. Grulke, W.B. Anderson, G. Wu,
Heat transfer properties of nanoparticle-in-fluid dispersions
(nanofluids) in laminar flow, Int. J. Heat Mass Transfer,
48 (2005) 1107–1116.
- M. Mehrali, E. Sadeghinezhad, M.A. Rosen, S.T. Latibari,
M. Mehrali, H.S.C. Metselaar, S.N. Kazi, Effect of specific surface
area on convective heat transfer of graphene nanoplatelet
aqueous nanofluids, Exp. Therm. Fluid Sci., 68 (2015) 100–108.
- J.A. Eastman, U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced
thermal conductivity through the development of nanofluids,
MRS Online Proc. Lib., 457 (1996) 3–11.
- H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, Thermal conductivity
enhancement of suspensions containing nanosized alumina
particles, J. Appl. Phys., 91 (2002) 4568–4572.
- M. Abdelgaied, M. El Hadi Attia, A.E. Kabeel, M.E. Zayed,
Improving the thermo-economic performance of hemispherical
solar distiller using copper oxide nanofluids and phase change
materials: experimental and theoretical investigation, Sol.
Energy Mater. Sol. Cells, 238 (2022) 111596, doi: 10.1016/j.solmat.2022.111596.
- M. El Hadi Attia, A.K. Hussein, G. Radhakrishnan,
S. Vaithilingam, O. Younis, N. Akkurt, Energy, exergy and
cost analysis of different hemispherical solar distillers: a
comparative study, Sol. Energy Mater. Sol. Cells, 252 (2023)
112187, doi: 10.1016/j.solmat.2023.112187.
- S.W. Sharshir, M.A. Omara, A. Joseph, A.W. Kandeal, A.M. Elsaid,
E.M.S. El-Said, I. Alatawi, M. Elashmawy, G.B. Abdelaziz,
Thermoenviroeconomic performance augmentation of solar
desalination unit integrated with wick, nanofluid, and different
nano-based energy storage materials, Sol. Energy, 262 (2023)
111896, doi: 10.1016/j.solener.2023.111896.
- K.R. Ranjan, S.C. Kaushik, N.L. Panwar, Energy and exergy
analysis of passive solar distillation systems, Int. J. Low-Carbon
Technol., 11 (2016) 211–221.
- S.W. Sharshir, A.H. Elsheikh, G. Peng, N. Yang,
M.O.A. El-Samadony, A.E. Kabeel, Thermal performance
and exergy analysis of solar stills – a review, Renewable
Sustainable Energy Rev., 73 (2017) 521–544.