References

  1. M.T. Ali, H.E.S. Fath, P.R. Armstrong, A comprehensive technoeconomical review of indirect solar desalination, Renewable Sustainable Energy Rev., 15 (2011) 4187–4199.
  2. S. Rashidi, N. Rahbar, M.S. Valipour, J.A. Esfahani, Enhancement of solar still by reticular porous media: experimental investigation with exergy and economic analysis, Appl. Therm. Eng., 130 (2018) 1341–1348.
  3. S. Rashidi, M. Bovand, J. Abolfazli Esfahani, Optimization of partitioning inside a single slope solar still for performance improvement, Desalination, 395 (2016) 79–91.
  4. N. Rahbar, A. Gharaiian, S. Rashidi, Exergy and economic analysis for a double slope solar still equipped by thermoelectric heating modules - an experimental investigation, Desalination, 420 (2017) 106–113.
  5. G. Xie, L. Sun, Z. Mo, H. Liu, M. Du, Conceptual design and experimental investigation involving a modular desalination system composed of arrayed tubular solar stills, Appl. Energy, 179 (2016) 972–984.
  6. A. Ahsan, M. Imtiaz, U.A. Thomas, M. Azmi, A. Rahman, N.N. Nik Daud, Parameters affecting the performance of a low cost solar still, Appl. Energy, 114 (2014) 924–930.
  7. C.-H. Huang, T.-R. Chang, Determination of optimal inclination function for external reflector of basin type still for maximum distillate productivity, Energy, 141 (2017) 1728–1736.
  8. G. Xie, W. Chen, T. Yan, J. Tang, H. Liu, S. Cao, Three-effect tubular solar desalination system with vacuum operation under actual weather conditions, Energy Convers. Manage., 205 (2020) 112371, doi: 10.1016/j.enconman.2019.112371.
  9. Y. Yang, Z. George Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Transfer, 48 (2005) 1107–1116.
  10. M. Mehrali, E. Sadeghinezhad, M.A. Rosen, S.T. Latibari, M. Mehrali, H.S.C. Metselaar, S.N. Kazi, Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids, Exp. Therm. Fluid Sci., 68 (2015) 100–108.
  11. J.A. Eastman, U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, MRS Online Proc. Lib., 457 (1996) 3–11.
  12. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91 (2002) 4568–4572.
  13. M. Abdelgaied, M. El Hadi Attia, A.E. Kabeel, M.E. Zayed, Improving the thermo-economic performance of hemispherical solar distiller using copper oxide nanofluids and phase change materials: experimental and theoretical investigation, Sol. Energy Mater. Sol. Cells, 238 (2022) 111596, doi: 10.1016/j.solmat.2022.111596.
  14. M. El Hadi Attia, A.K. Hussein, G. Radhakrishnan, S. Vaithilingam, O. Younis, N. Akkurt, Energy, exergy and cost analysis of different hemispherical solar distillers: a comparative study, Sol. Energy Mater. Sol. Cells, 252 (2023) 112187, doi: 10.1016/j.solmat.2023.112187.
  15. S.W. Sharshir, M.A. Omara, A. Joseph, A.W. Kandeal, A.M. Elsaid, E.M.S. El-Said, I. Alatawi, M. Elashmawy, G.B. Abdelaziz, Thermoenviroeconomic performance augmentation of solar desalination unit integrated with wick, nanofluid, and different nano-based energy storage materials, Sol. Energy, 262 (2023) 111896, doi: 10.1016/j.solener.2023.111896.
  16. K.R. Ranjan, S.C. Kaushik, N.L. Panwar, Energy and exergy analysis of passive solar distillation systems, Int. J. Low-Carbon Technol., 11 (2016) 211–221.
  17. S.W. Sharshir, A.H. Elsheikh, G. Peng, N. Yang, M.O.A. El-Samadony, A.E. Kabeel, Thermal performance and exergy analysis of solar stills – a review, Renewable Sustainable Energy Rev., 73 (2017) 521–544.