References

  1. M.N. Rahi, A.J. Jaeel, A.J. Abbas, Treatment of petroleum refinery effluents and wastewater in Iraq: a mini review, IOP Conf. Ser.: Mater. Sci. Eng., 1058 (2021) 012072, doi: 10.1088/1757-899X/1058/1/012072.
  2. D.A. Aljuboury, P. Palaniandy, H.B. Abdul Aziz, S. Feroz, Treatment of petroleum wastewater by conventional and new technologies - a review, Global Nest J., 19 (2017) 439–452.
  3. T.E. Welch, Moving Beyond Environmental Compliance: A Handbook for Integrating Pollution Prevention with ISO 14000, CRC Press, Boca Raton, 2018.
  4. I. Phummiphan, S. Horpibulsuk, R. Rachan, A. Arulrajah, S.-L. Shen, P. Chindaprasirt, Corrigendum to “high calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material, J. Hazard. Mater., 341 (2018) 257–267.
  5. F. Shahrezaei, Y. Mansouri, A.A.L. Zinatizadeh, A. Akhbari, Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles, Powder Technol., 221 (2012) 203–212.
  6. M.R. Esfahani, S.A. Aktij, Z. Dabaghian, M.D. Firouzjaei, A. Rahimpour, J. Eke, I.C. Escobar, M. Abolhassani, L.F. Greenlee, A.R. Esfahani, Nanocomposite membranes for water separation and purification: fabrication, modification, and applications, Sep. Purif. Technol., 213 (2019) 465–499.
  7. S.M. Jiménez, M.M. Micó, M. Arnaldos, F. Medina, S. Contreras, State-of-the-art of produced water treatment, Chemosphere, 192 (2018) 186–208.
  8. K. Zuo, M. Chen, F. Liu, K. Xiao, J. Zuo, X. Cao, X. Zhang, P. Liang, X. Huang, Coupling microfiltration membrane with biocathode microbial desalination cell enhances advanced purification and long-term stability for treatment of domestic wastewater, J. Membr. Sci., 547 (2018) 34–42.
  9. C.E. Santo, V.J.P. Vilar, C.M.S. Botelho, A. Bhatnagar, E. Kumar, R.A.R. Boaventura, Optimization of coagulation–flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant, Chem. Eng. J., 183 (2012) 117–123.
  10. E. Güneş, E. Demir, Y. Güneş, A. Hanedar, Characterization and treatment alternatives of industrial container and drum cleaning wastewater: comparison of Fenton-like process and combined coagulation/oxidation processes, Sep. Purif. Technol., 209 (2019) 426–433.
  11. S. Martini, S. Afroze, K.A. Roni, Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr(III) from industrial wastewater, Alexandria Eng. J., 59 (2020) 1637–1648.
  12. M.A. Hussein, A.A. Mohammed, M.A. Atiya, Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment: an overview, Environ. Sci. Pollut. Res., 26 (2019) 36184–36204.
  13. A.A. Mohammed, M.A. Atiya, M.A. Hussein, Studies on membrane stability and extraction of ciprofloxacin from aqueous solution using Pickering emulsion liquid membrane stabilized by magnetic nano-Fe2O3, Colloids Surf., A, 585 (2020) 124044, doi: 10.1016/j.colsurfa.2019.124044.
  14. S. Munirasu, M.A. Haija, F. Banat, Use of membrane technology for oil field and refinery produced water treatment—a review, Process Saf. Environ. Prot., 100 (2016) 183–202.
  15. J. Ma, R. Dai, M. Chen, S.J. Khan, Z. Wang, Applications of membrane bioreactors for water reclamation: micropollutant removal, mechanisms and perspectives, Bioresour. Technol., 269 (2018) 532–543.
  16. L. Altaş, H. Büyükgüngör, Sulfide removal in petroleum refinery wastewater by chemical precipitation, J. Hazard. Mater., 153 (2008) 462–469.
  17. T.-K. Tran, K.-F. Chiu, C.-Y. Lin, H.-J. Leu, Electrochemical treatment of wastewater: selectivity of the heavy metals removal process, Int. J. Hydrogen Energy, 42 (2017) 27741–27748.
  18. X. Niu, X. Li, J. Pan, Y. He, F. Qiu, Y. Yan, Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges, RSC Adv., 6 (2016) 84893–84905.
  19. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
  20. S. Rajoriya, S. Bargole, S. George, V.K. Saharan, Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents, J. Hazard. Mater., 344 (2018) 1109–1115.
  21. S. Singh, S.L. Lo, V.C. Srivastava, A.D. Hiwarkar, Comparative study of electrochemical oxidation for dye degradation: parametric optimization and mechanism identification, J. Environ. Chem. Eng., 4 (2016) 2911–2921.
  22. I.D. Santos, J.C. Afonso, A.J.B. Dutra, Behavior of a Ti/RuO2 anode in concentrated chloride medium for phenol and their chlorinated intermediates electrooxidation, Sep. Purif. Technol., 76 (2010) 151–157.
  23. C.A. Martínez-Huitle, L.S. Andrade, Electrocatalysis in wastewater treatment: recent mechanism advances, Quim. Nova, 34 (2011) 850–858.
  24. S. Abbasi, M. Mirghorayshi, S. Zinadini, A.A. Zinatizadeh, A novel single continuous electrocoagulation process for treatment of licorice processing wastewater: optimization of operating factors using RSM, Process Saf. Environ. Prot., 134 (2020) 323–332.
  25. K.K. Salam, A.O. Arinkoola, E.O. Oke, J.O. Adeleye, Optimization of operating parameters using response surface methodology for paraffin-wax deposition in pipeline, Pet. Coal, 56 (2014) 19–28.
  26. A.R. Matin, S. Yousefzadeh, E. Ahmadi, A. Mahvi, M. Alimohammadi, H. Aslani, R. Nabizadeh, A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization, Food Chem. Toxicol., 116 (2018) 129–137.
  27. K. Hendaoui, F. Ayari, I.B. Rayana, R.B. Amar, F. Darragi, M. Trabelsi-Ayadi, Real indigo dyeing effluent decontamination using continuous electrocoagulation cell: study and optimization using response surface methodology, Process Saf. Environ. Prot., 116 (2018) 578–589.
  28. H. Zhang, Y. Li, X. Zhong, X. Ran, Application of experimental design methodology to the decolorization of Orange II using low iron concentration of photoelectro-Fenton process, Water Sci. Technol., 63 (2011) 1373–1380.
  29. M. Darvishmotevalli, A. Zarei, M. Moradnia, M. Noorisepehr, H. Mohammadi, Optimization of saline wastewater treatment using electrochemical oxidation process: prediction by RSM method, MethodsX, 6 (2019) 1101–1113.
  30. J. de Jesús Treviño-Reséndez, A. Medel, Y. Meas, Electrochemical technologies for treating petroleum industry wastewater, Curr. Opin. Electrochem., 27 (2021) 100690, doi: 10.1016/j.coelec.2021.100690.
  31. L.C. Espinoza, C. Candia-Onfray, J. Vidal, R. Salazar, Influence of the chemical nature of boron‐doped diamond anodes on wastewater treatments, Curr. Opin. Solid State Mater. Sci., 25 (2021) 100963, doi: 10.1016/j.cossms.2021.100963.
  32. C.A. Martínez-Huitle, E. Brillas, A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode, Curr. Opin. Solid State Mater. Sci., 25 (2021) 100926, doi: 10.1016/j.cossms.2021.100926.
  33. H. Ajab, M.H. Isa, A. Yaqub, Electrochemical oxidation using Ti/RuO2 anode for COD and PAHs removal from aqueous solution, Sustainable Mater. Technol., 26 (2020) e00225, doi: 10.1016/j.susmat.2020.e00225.
  34. A.N. Ghanim, A.S. Hamza, Evaluation of direct anodic oxidation process for the treatment of petroleum refinery wastewater, J. Environ. Eng., 144 (2018) 04018047, doi: 10.1061/(ASCE)EE.1943-7870.0001389.
  35. J. Ma, M. Gao, H. Shi, J. Ni, Y. Xu, Q. Wang, Progress in research and development of particle electrodes for three-dimensional electrochemical treatment of wastewater: a review, Environ. Sci. Pollut. Res., 28 (2021) 47800–47824.
  36. W. Li, G. Liu, D. Miao, Z. Li, Y. Chen, X. Gao, T. Liu, Q. Wei, L. Ma, K. Zhou, Electrochemical oxidation of Reactive Blue 19 on boron-doped diamond anode with different supporting electrolyte, J. Environ. Chem. Eng., 8 (2020) 103997, doi: 10.1016/j.jece.2020.103997.
  37. O. Abdelwahab, N.K. Amin, E.Z. El-Ashtoukhy, Electrochemical removal of phenol from oil refinery wastewater, J. Hazard. Mater., 163 (2009) 711–716.
  38. S. Sharma, H. Simsek, Treatment of canola-oil refinery effluent using electrochemical methods: a comparison between combined electrocoagulation + electrooxidation and electrochemical peroxidation methods, Chemosphere, 221 (2019) 630–639.
  39. H.A. Shamkhi, A.D.Z. Albdiri, F.A. Jabir, D. Petruzzelli, Removal of Pb2+, Cu2+, and Cd2+ ions from a saline wastewater using emulsion liquid membrane: applying response surface methodology for optimization and data analysis, Arabian J. Sci. Eng., 47 (2022) 5705–5719.
  40. N. Sadati, R.B. Chinnam, M.Z. Nezhad, Observational data-driven modeling and optimization of manufacturing processes, Expert Syst. Appl., 93 (2018) 456–464.
  41. Y.-D. Chen, W.-Q. Chen, B. Huang, M.-J. Huang, Process optimization of K2C2O4-activated carbon from kenaf core using Box–Behnken design, Chem. Eng. Res. Des., 91 (2013) 1783–1789.
  42. A.N. Popova, Crystallographic analysis of graphite by X-ray diffraction, Coke Chem., 60 (2017) 361–365.
  43. H.R. Jiang, W. Shyy, M.C. Wu, R.H. Zhang, T.S. Zhao, A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries, Appl. Energy, 233 (2019) 105–113.
  44. I. Saravanan, A.E. Perumal, S.C. Vettivel, N. Selvakumar, A. Baradeswaran, Optimizing wear behavior of TiN coated SS 316L against Ti alloy using response surface methodology, Mater. Des., 67 (2015) 469–482.
  45. M. Xu, D. Jin, E. Song, Parameter Identification of the High- Fill Foundations Using Response Surface Method, W. Wu, H.S. Yu, Eds., Proceedings of China-Europe Conference on Geotechnical Engineering, Springer Series in Geomechanics and Geoengineering, Springer, Cham, 2018, pp. 1055–1058.
    doi: 10.1007/978-3-319-97115-5_37
  46. O. Scialdone, S. Randazzo, A. Galia, G. Silvestri, Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl, Water Res., 43 (2009) 2260–2272.