References
- M.N. Rahi, A.J. Jaeel, A.J. Abbas, Treatment of petroleum
refinery effluents and wastewater in Iraq: a mini review,
IOP Conf. Ser.: Mater. Sci. Eng., 1058 (2021) 012072,
doi: 10.1088/1757-899X/1058/1/012072.
- D.A. Aljuboury, P. Palaniandy, H.B. Abdul Aziz, S. Feroz,
Treatment of petroleum wastewater by conventional and new
technologies - a review, Global Nest J., 19 (2017) 439–452.
- T.E. Welch, Moving Beyond Environmental Compliance:
A Handbook for Integrating Pollution Prevention with ISO
14000, CRC Press, Boca Raton, 2018.
- I. Phummiphan, S. Horpibulsuk, R. Rachan, A. Arulrajah,
S.-L. Shen, P. Chindaprasirt, Corrigendum to “high calcium fly
ash geopolymer stabilized lateritic soil and granulated blast
furnace slag blends as a pavement base material, J. Hazard.
Mater., 341 (2018) 257–267.
- F. Shahrezaei, Y. Mansouri, A.A.L. Zinatizadeh, A. Akhbari,
Process modeling and kinetic evaluation of petroleum refinery
wastewater treatment in a photocatalytic reactor using TiO2
nanoparticles, Powder Technol., 221 (2012) 203–212.
- M.R. Esfahani, S.A. Aktij, Z. Dabaghian, M.D. Firouzjaei,
A. Rahimpour, J. Eke, I.C. Escobar, M. Abolhassani,
L.F. Greenlee, A.R. Esfahani, Nanocomposite membranes for
water separation and purification: fabrication, modification,
and applications, Sep. Purif. Technol., 213 (2019) 465–499.
- S.M. Jiménez, M.M. Micó, M. Arnaldos, F. Medina, S. Contreras,
State-of-the-art of produced water treatment, Chemosphere,
192 (2018) 186–208.
- K. Zuo, M. Chen, F. Liu, K. Xiao, J. Zuo, X. Cao, X. Zhang,
P. Liang, X. Huang, Coupling microfiltration membrane with
biocathode microbial desalination cell enhances advanced
purification and long-term stability for treatment of domestic
wastewater, J. Membr. Sci., 547 (2018) 34–42.
- C.E. Santo, V.J.P. Vilar, C.M.S. Botelho, A. Bhatnagar, E. Kumar,
R.A.R. Boaventura, Optimization of coagulation–flocculation
and flotation parameters for the treatment of a petroleum
refinery effluent from a Portuguese plant, Chem. Eng. J.,
183 (2012) 117–123.
- E. Güneş, E. Demir, Y. Güneş, A. Hanedar, Characterization
and treatment alternatives of industrial container and drum
cleaning wastewater: comparison of Fenton-like process and
combined coagulation/oxidation processes, Sep. Purif. Technol.,
209 (2019) 426–433.
- S. Martini, S. Afroze, K.A. Roni, Modified eucalyptus bark as
a sorbent for simultaneous removal of COD, oil, and Cr(III)
from industrial wastewater, Alexandria Eng. J., 59 (2020)
1637–1648.
- M.A. Hussein, A.A. Mohammed, M.A. Atiya, Application of
emulsion and Pickering emulsion liquid membrane technique
for wastewater treatment: an overview, Environ. Sci. Pollut.
Res., 26 (2019) 36184–36204.
- A.A. Mohammed, M.A. Atiya, M.A. Hussein, Studies on
membrane stability and extraction of ciprofloxacin from
aqueous solution using Pickering emulsion liquid membrane
stabilized by magnetic nano-Fe2O3, Colloids Surf., A, 585 (2020)
124044, doi: 10.1016/j.colsurfa.2019.124044.
- S. Munirasu, M.A. Haija, F. Banat, Use of membrane technology
for oil field and refinery produced water treatment—a review,
Process Saf. Environ. Prot., 100 (2016) 183–202.
- J. Ma, R. Dai, M. Chen, S.J. Khan, Z. Wang, Applications of
membrane bioreactors for water reclamation: micropollutant
removal, mechanisms and perspectives, Bioresour. Technol.,
269 (2018) 532–543.
- L. Altaş, H. Büyükgüngör, Sulfide removal in petroleum
refinery wastewater by chemical precipitation, J. Hazard.
Mater., 153 (2008) 462–469.
- T.-K. Tran, K.-F. Chiu, C.-Y. Lin, H.-J. Leu, Electrochemical
treatment of wastewater: selectivity of the heavy metals
removal process, Int. J. Hydrogen Energy, 42 (2017)
27741–27748.
- X. Niu, X. Li, J. Pan, Y. He, F. Qiu, Y. Yan, Recent advances
in non-enzymatic electrochemical glucose sensors based on
non-precious transition metal materials: opportunities and
challenges, RSC Adv., 6 (2016) 84893–84905.
- M. Panizza, G. Cerisola, Direct and mediated anodic oxidation
of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
- S. Rajoriya, S. Bargole, S. George, V.K. Saharan, Treatment of
textile dyeing industry effluent using hydrodynamic cavitation
in combination with advanced oxidation reagents, J. Hazard.
Mater., 344 (2018) 1109–1115.
- S. Singh, S.L. Lo, V.C. Srivastava, A.D. Hiwarkar, Comparative
study of electrochemical oxidation for dye degradation:
parametric optimization and mechanism identification,
J. Environ. Chem. Eng., 4 (2016) 2911–2921.
- I.D. Santos, J.C. Afonso, A.J.B. Dutra, Behavior of a Ti/RuO2
anode in concentrated chloride medium for phenol and their
chlorinated intermediates electrooxidation, Sep. Purif. Technol.,
76 (2010) 151–157.
- C.A. Martínez-Huitle, L.S. Andrade, Electrocatalysis in
wastewater treatment: recent mechanism advances, Quim.
Nova, 34 (2011) 850–858.
- S. Abbasi, M. Mirghorayshi, S. Zinadini, A.A. Zinatizadeh,
A novel single continuous electrocoagulation process for
treatment of licorice processing wastewater: optimization
of operating factors using RSM, Process Saf. Environ. Prot.,
134 (2020) 323–332.
- K.K. Salam, A.O. Arinkoola, E.O. Oke, J.O. Adeleye,
Optimization of operating parameters using response surface
methodology for paraffin-wax deposition in pipeline, Pet. Coal,
56 (2014) 19–28.
- A.R. Matin, S. Yousefzadeh, E. Ahmadi, A. Mahvi,
M. Alimohammadi, H. Aslani, R. Nabizadeh, A comparative
study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by
response surface methodology for modeling and optimization,
Food Chem. Toxicol., 116 (2018) 129–137.
- K. Hendaoui, F. Ayari, I.B. Rayana, R.B. Amar, F. Darragi,
M. Trabelsi-Ayadi, Real indigo dyeing effluent decontamination
using continuous electrocoagulation cell: study and
optimization using response surface methodology, Process Saf.
Environ. Prot., 116 (2018) 578–589.
- H. Zhang, Y. Li, X. Zhong, X. Ran, Application of experimental
design methodology to the decolorization of Orange II using
low iron concentration of photoelectro-Fenton process,
Water Sci. Technol., 63 (2011) 1373–1380.
- M. Darvishmotevalli, A. Zarei, M. Moradnia, M. Noorisepehr,
H. Mohammadi, Optimization of saline wastewater treatment
using electrochemical oxidation process: prediction by RSM
method, MethodsX, 6 (2019) 1101–1113.
- J. de Jesús Treviño-Reséndez, A. Medel, Y. Meas, Electrochemical
technologies for treating petroleum industry wastewater,
Curr. Opin. Electrochem., 27 (2021) 100690, doi: 10.1016/j.coelec.2021.100690.
- L.C. Espinoza, C. Candia-Onfray, J. Vidal, R. Salazar, Influence
of the chemical nature of boron‐doped diamond anodes on
wastewater treatments, Curr. Opin. Solid State Mater. Sci.,
25 (2021) 100963, doi: 10.1016/j.cossms.2021.100963.
- C.A. Martínez-Huitle, E. Brillas, A critical review over the
electrochemical disinfection of bacteria in synthetic and real
wastewaters using a boron-doped diamond anode, Curr.
Opin. Solid State Mater. Sci., 25 (2021) 100926, doi: 10.1016/j.cossms.2021.100926.
- H. Ajab, M.H. Isa, A. Yaqub, Electrochemical oxidation using
Ti/RuO2 anode for COD and PAHs removal from aqueous
solution, Sustainable Mater. Technol., 26 (2020) e00225,
doi: 10.1016/j.susmat.2020.e00225.
- A.N. Ghanim, A.S. Hamza, Evaluation of direct anodic
oxidation process for the treatment of petroleum refinery
wastewater, J. Environ. Eng., 144 (2018) 04018047, doi: 10.1061/(ASCE)EE.1943-7870.0001389.
- J. Ma, M. Gao, H. Shi, J. Ni, Y. Xu, Q. Wang, Progress in research
and development of particle electrodes for three-dimensional
electrochemical treatment of wastewater: a review, Environ. Sci.
Pollut. Res., 28 (2021) 47800–47824.
- W. Li, G. Liu, D. Miao, Z. Li, Y. Chen, X. Gao, T. Liu, Q. Wei,
L. Ma, K. Zhou, Electrochemical oxidation of Reactive Blue
19 on boron-doped diamond anode with different supporting
electrolyte, J. Environ. Chem. Eng., 8 (2020) 103997,
doi: 10.1016/j.jece.2020.103997.
- O. Abdelwahab, N.K. Amin, E.Z. El-Ashtoukhy, Electrochemical
removal of phenol from oil refinery wastewater, J. Hazard.
Mater., 163 (2009) 711–716.
- S. Sharma, H. Simsek, Treatment of canola-oil refinery
effluent using electrochemical methods: a comparison
between combined electrocoagulation + electrooxidation
and electrochemical peroxidation methods, Chemosphere,
221 (2019) 630–639.
- H.A. Shamkhi, A.D.Z. Albdiri, F.A. Jabir, D. Petruzzelli,
Removal of Pb2+, Cu2+, and Cd2+ ions from a saline wastewater
using emulsion liquid membrane: applying response surface
methodology for optimization and data analysis, Arabian J.
Sci. Eng., 47 (2022) 5705–5719.
- N. Sadati, R.B. Chinnam, M.Z. Nezhad, Observational
data-driven modeling and optimization of manufacturing
processes, Expert Syst. Appl., 93 (2018) 456–464.
- Y.-D. Chen, W.-Q. Chen, B. Huang, M.-J. Huang, Process
optimization of K2C2O4-activated carbon from kenaf core
using Box–Behnken design, Chem. Eng. Res. Des., 91 (2013)
1783–1789.
- A.N. Popova, Crystallographic analysis of graphite by X-ray
diffraction, Coke Chem., 60 (2017) 361–365.
- H.R. Jiang, W. Shyy, M.C. Wu, R.H. Zhang, T.S. Zhao,
A bi-porous graphite felt electrode with enhanced surface
area and catalytic activity for vanadium redox flow batteries,
Appl. Energy, 233 (2019) 105–113.
- I. Saravanan, A.E. Perumal, S.C. Vettivel, N. Selvakumar,
A. Baradeswaran, Optimizing wear behavior of TiN coated
SS 316L against Ti alloy using response surface methodology,
Mater. Des., 67 (2015) 469–482.
- M. Xu, D. Jin, E. Song, Parameter Identification of the High-
Fill Foundations Using Response Surface Method, W. Wu,
H.S. Yu, Eds., Proceedings of China-Europe Conference on
Geotechnical Engineering, Springer Series in Geomechanics
and Geoengineering, Springer, Cham, 2018, pp. 1055–1058.
doi: 10.1007/978-3-319-97115-5_37
- O. Scialdone, S. Randazzo, A. Galia, G. Silvestri, Electrochemical
oxidation of organics in water: role of operative parameters in
the absence and in the presence of NaCl, Water Res., 43 (2009)
2260–2272.