References
- J.N. Brown, B.M. Peake, Sources of heavy metals and polycyclic
aromatic hydrocarbons in urban stormwater runoff, Sci.
Total Environ., 359 (2006) 145–155.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- Q. Wang, Z. Yang, Industrial water pollution, water
environment treatment, and health risks in China, Environ.
Pollut., 218 (2016) 358–365.
- M.C.M. Van Loosdrecht, D. Brdjanovic, Anticipating the next
century of wastewater treatment, Science, 344 (2014) 1452–1453.
- J.W. Erisman, M.A. Sutton, J.N. Galloway, Z. Klimont,
W. Winiwarter, How a century of ammonia synthesis changed
the world, Nat. Geosci., 1 (2008) 636−639.
- J.N. Galloway, E.B. Cowling, Reactive nitrogen and the world:
200 years of change, AMBIO, J. Hum. Environ., 31 (2002) 64–71.
- I. Pikaar, S. Matassa, K. Rabaey, B.L. Bodirsky, A. Popp,
M. Herrero, W. Verstraete, Microbes and the next nitrogen
revolution, Environ. Sci. Technol., 51 (2017) 7297−7303.
- R. Brown, C.A. Winkler, The chemical behavior of active
nitrogen, Angew. Chem. Int. Ed. in English, 9 (1970) 181–196.
- W.Q. Liao, M.H. Zhao, H.W. Rong, P. Jiang, Q. Liao,
C.S. Zhang, Y.T. Chen, Photocatalyst immobilized by hydrogel,
efficient degradation and self-regeneration: a review, Mater.
Sci. Semicond. Process., 150 (2022) 106929, doi: 10.1016/j.mssp.2022.106929.
- D. Kanakaraju, F.D. anak Kutiang, Y.C. Lim, P.S. Goh, Recent
progress of Ag/TiO2 photocatalyst for wastewater treatment:
doping, co-doping, and green materials functionalization,
Appl. Mater. Today, 27 (2022) 101500, doi: 10.1016/j.apmt.2022.101500.
- E. Baranowska-Wójcik, D. Szwajgier, P. Oleszczuk, A. Winiarska-
Mieczan, Effects of titanium dioxide nanoparticles exposure
on human health—a review, Biol. Trace Elem. Res., 193 (2020)
118–129.
- N. Kumar, N.S. Chauhan, A. Mittal, S. Sharma, TiO2 and its
composites as promising biomaterials: a review, BioMetals,
31 (2018) 147–159.
- X. Yi, Z. Xu, Y. Liu, X. Guo, M. Ou, X. Xu, Highly efficient
removal of uranium(VI) from wastewater by polyacrylic acid
hydrogels, RSC Adv., 7 (2017) 6278–6287.
- C.G. Gomez, M. Rinaudo, M.A. Villar, Oxidation of sodium
alginate and characterization of the oxidized derivatives,
Carbohydr. Polym., 67 (2007) 296–304.
- D. Huang, W. Wang, A. Wang, Removal of Cu2+ and Zn2+ ions
from aqueous solution using sodium alginate and attapulgite
composite hydrogels, Adsorpt. Sci. Technol., 31 (2013) 611–623.
- M.W. Sabaa, A.M. Ali, S.M.A. Soliman, Physical hydrogel based
on alginate and poly(2-hydroxyethyl methacrylate) for water
treatment, Desal. Water Treat., 174 (2019) 152–160.
- W.H. Yang, Y.J. Zhang, J.H. Zheng, L. Liu, M.Y. Si, Q. Liao,
Z.H. Yang, F.P. Zhao, Migration of spent grain-modified
colloidal ferrihydrite: Implications for the in-situ stabilization
of arsenic, lead, and cadmium in co-contaminated soil,
Chemosphere, 344 (2023) 140–310.
- H. Liu, Y.X. Fu, S.X. Chen, W.C. Zhang, K.S. Xiang, F.H. Shen,
R.Y. Xiao, L.Y. Chai, F.P. Zhao, A layered g-C3N4 support singleatom
Fe-N4 catalyst derived from hemin to activate PMS for
selective degradation of electron-rich compounds via singlet
oxygen species, Chem. Eng. J., 474 (2023) 145571, doi: 10.1016/j.cej.2023.145571.
- S.M.N. Alam, S. Marzia, M. Atol, I. Sumon, N.R. Fataha,
I. Aminul, A.S.M. Sumaia, A review on the development of
elemental and co-doped TiO2 photocatalysts for enhanced dye
degradation under UV–vis irradiation, J. Water Process Eng.,
47 (2022) 102728, doi: 10.1016/j.jwpe.2022.102728.
- Y. Zhao, X.Y. Linghu, Y. Shu, J.W. Zhang, Z. Chen, Y. Wu,
D. Shan, B.Q. Wang, Classification and catalytic mechanisms of
heterojunction photocatalysts and the application of titanium
dioxide (TiO2)-based heterojunctions in environmental
remediation, J. Environ. Chem. Eng., 10 (2022) 108077,
doi: 10.1016/j.jece.2022.108077.
- A.D. Racovita, Titanium dioxide: structure, impact, and toxicity,
Int. J. Environ. Res. Public Health, 19 (2022) 5681, doi: 10.3390/ijerph19095681.
- J. Wang, Z. Wang, W. Wang, Synthesis, modification and
application of titanium dioxide nanoparticles: a review,
Nanoscale, 14 (2022) 6709–6734.
- M.H. Alhaji, K. Sanaullah, A. Khan, Recent developments in
immobilizing titanium dioxide on supports for degradation
of organic pollutants in wastewater-a review, Int. J. Environ.
Sci. Technol., 14 (2017) 2039–2052.
- A.T. Kuvarega, B.B. Mamba, TiO2-based photocatalysis: toward
visible light-responsive photocatalysts through doping and
fabrication of carbon-based nanocomposites, Crit. Rev. Solid
State Mater. Sci., 42 (2017) 295–346.
- L.P. Gianluca, B. Awang, K. Duduku, G. Joseph Collin,
Preparation of titanium dioxide photocatalyst loaded onto
activated carbon support using chemical vapor deposition:
a review paper, J. Hazard. Mater., 157 (2008) 209–219.
- L. Liu, Z.H. Yang, W.C. Yang, W. Jiang, Q. Liao, M.Y. Si, F.P. Zhao,
Ferrihydrite transformation impacted by coprecipitation of
lignin: inhibition or facilitation, J. Environ. Sci., 139 (2024) 23–33.
- H. Zhu, Z. Li, J. Yang, A novel composite hydrogel for
adsorption and photocatalytic degradation of bisphenol A by
visible light irradiation, Chem. Eng. J., 334 (2018) 1679–1690.
- S. Zhao, C. Hou, L.R. Shao, W.J. An, W.Q. Cui, Adsorption
and in-situ photocatalytic synergy degradation of
2,4-dichlorophenol by three-dimensional graphene hydrogel
modified with highly dispersed TiO2 nanoparticles, Appl. Surf.
Sci., 590 (2022) 153088, doi: 10.1016/j.apsusc.2022.153088.
- R. Ratshiedana, A.T. Kuvarega, A.K. Mishra, Titanium dioxide
and graphitic carbon nitride–based nanocomposites and
nanofibres for the degradation of organic pollutants in water: a
review, Environ. Sci. Pollut. Res., 28 (2021) 10357–10374.
- E.S. Dragan, Design and applications of interpenetrating
polymer network hydrogels: a review, Chem. Eng. J., 243 (2014)
572–590.
- J.B. Sytze, W.M.B. Kristel, J.D. Pieter, F.J. Jan, V. Tina, E.H. Wim.
Hydrogels in a historical perspective: from simple networks to
smart materials, J. Controlled Release, 190 (2014) 254–273.
- Y. Zhao, C. Shi, X. Yang, pH- and temperature-sensitive
hydrogel nanoparticles with dual photoluminescence for
bioprobes, ACS Nano, 10 (2016) 5856–5863.
- X.J. Ju, S.B. Zhang, M.Y. Zhou, L.H. Yang, L.Y. Chu, Novel
heavy-metal adsorption material: ion-recognition P(NIPAMco-
BCAm) hydrogels for removal of lead(II) ions, J. Hazard.
Mater., 167 (2009) 114–118.
- S. Thakur, O. Synthesis, Characterization and adsorption
studies of an acrylic acid-grafted sodium alginate-based TiO2
hydrogel nanocomposite, Adsorpt. Sci. Technol., 36 (2017)
458–477.
- T.M. Wu, A. Sawut, R. Simayi, X.K. Gong, X.H. Zhang,
M.H. Jiang, Z.W. Zhu, Green synthesis and environmental
applications of alginate/polyacrylamide/titanium dioxide
composite hydrogel, J. Appl. Polym. Sci.,140 (2023) e54394,
doi: 10.1002/app.54394.
- Y.E. Moon, G. Jung, J. Yun, H.I. Kim, Poly(vinyl alcohol)/
poly(acrylic acid)/TiO2/graphene oxide nanocomposite
hydrogels for pH-sensitive photocatalytic degradation of
organic pollutants, Mater. Sci. Eng., 178 (2013) 1097–1103.
- H. Xiang, Z. Yang, S. Liu, Natural pyrite-assisted
mechanochemical recovery of insoluble manganese from
electrolytic manganese residue: kinetics and mechanisms,
ACS ES&T Eng., 10 (2023) 1661–1673.
- L Liu, Z.H. Yang, F.P. Zhao, Z.T. Chai, W.C. Yang, H.R. Xiang,
Q. Liao, M.Y. Si, Z. Lin, Manganese doping of hematite
enhancing oxidation and bidentate-binuclear complexation
during As(III) remediation: experiments and DFT calculation,
Chem. Eng. J., 471 (2023) 144–758.