References
- M. Zendehbad, M. Mostaghelchi, M. Mojganfar, P. Cepuder,
W. Loiskandl, Nitrate in groundwater and agricultural
products: intake and risk assessment in northeastern Iran,
Environ. Sci. Pollut. Res., 29 (2022) 78603–78619.
- WHO, Guidelines for Drinking-Water Quality, 4th ed.,
WHO Library Cataloguing-In-Publication Data, 2011.
- C. Su, R.W. Puls, Removal of added nitrate in the single,
binary, and ternary systems of cotton burr compost, zerovalent
iron, and sediment: implications for groundwater nitrate
remediation using permeable reactive barriers, Chemosphere,
67 (2007) 1653–1662.
- R.C. Scholes, M.A. Vega, J.O. Sharp, D.L. Sedlak, Nitrate
removal from reverse osmosis concentrate in pilot-scale
open-water unit process wetlands, Environ. Sci. Water Res.
Technol., 7 (2021) 650–661.
- N. Arahman, S. Mulyati, M.R. Lubis, R. Takagi, H. Matsuyama,
Removal performance of NO3– ion from groundwater
by electrodialysis, AIP Conf. Proc., 1788 (2017) 030090,
doi: 10.1063/1.4968343.
- I. Fux, L. Birnhack, S.C.N. Tang, O. Lahav, Removal of nitrate
from drinking water by ion-exchange followed by nZVI-based
reduction and electrooxidation of the ammonia product to
N2(g), ChemEng., 1 (2017) 1–19.
- Y. Hwang, Kim, H. Shin, Mechanism study of nitrate reduction
by nano zero valent iron, J. Hazard. Mater., 185 (2011)
1513–1521.
- M. Kumar, S. Chakraborty, Chemical denitrification of
water by zero-valent magnesium powder, J. Hazard. Mater.,
135 (2006) 112–121.
- Y. Zhang, G.B. Douglas, L. Pu, Q. Zhao, Y. Tang, W. Xu,
B. Luo, W. Hong, L. Cui, Z. Ye, Zero-valent iron-facilitated
reduction of nitrate: chemical kinetics and reaction pathways,
Sci. Total Environ., 598 (2017) 1140–1150.
- MF. Dahab, S. Sirigina, Nitrate removal from water supplies
using biodenitrification and GAC-sand filter system,
Water Sci. Technol., 30 (1994) 133–139.
- C. Bucior, S. Dore, D. Pope, R. Thomas, W. Ghd, N. Falls,
Enhanced denitrification for treatment of nitrate plumes
associated with fertilizers: bioremediation and sustainable
environmental technologies, (2017).
- S. Hashimoto, K. Furukawa, M. Shioyama, Autotrophic
denitrification using elemental sulfur, J. Ferment. Technol.,
65 (1987) 683–692.
- L.A. Schipper, M.V. Vuković, Nitrate removal from
groundwater and denitrification rates in a porous treatment
wall amended with sawdust, Ecol. Eng., 14 (2000) 269–278.
- N. Bleyen, S. Smets, J. Small, H. Moors, N. Leys, E. Valcke,
A. Albrecht, P.D. Cannière, B. Schwyn, C. Wittebroodt, E. Valcke,
Impact of the electron donor on in-situ microbial nitrate
reduction in Opalinus Clay: results from the Mont Terri rock
laboratory (Switzerland), Swiss J. Geosci., 110 (2017) 355–374.
- B.A. Till, L.J. Weathers, P.J.J. Alvarez, Fe(0)-supported
autotrophic denitrification, Environ. Sci. Technol., 32 (1998)
634–639.
- P. Loganathan, S. Vigneswaran, J. Kandasamy, Enhanced
removal of nitrate from water using surface modification of
adsorbents - a review, J. Environ. Manage., 131 (2013) 363–374.
- Archna, S.K. Sharma, R.C. Sobti, Nitrate removal from ground
water: a review, E-J. Chem., 9 (2012) 1667–1675.
- E. Bekhradinassab, S. Sabbaghi, Removal of nitrate from
drinking water using nano SiO2-FeOOH-Fe core-shell,
Desalination, 347 (2014) 1–9.
- B. Kamarehie, E. Aghaali, S.A. Mousavi, A. Jafari, Nitrate
removal from aqueous solutions using granular activated
carbon modified with iron nanoparticles, Int. J. Eng., 31 (2018)
554–563.
- M. Fazlzadeh, A. Sh, M. Vosoughi, R. Khosravi, A. Sadigh,
Nitrate ion adsorption from aqueous solution by a novel local
green montmorillonite adsorbent, J. Health, 8 (2017) 298–311.
- M. Abdelwaheb, K. Jebali, H. Dhaouadi, S.D. Dhaouadi,
Adsorption of nitrate, phosphate, nickel and lead on soils:
risk of groundwater contamination, Ecotoxicol. Environ. Saf.,
179 (2019) 182–187.
- H.R. Pourzamani, N. Mengelīzadeh, M. Jalil, Nitrate removal
from aqueous solutions by magnetic nanoparticle, J. Environ
Health Sustainable Dev., 2 (2017) 187.
- C.J. Mena-Duran, M.R. Sun Kou, C.J. Mena-Duran,
T. Lopez, J.A. Azamar Barrios, D.H. Aguilar, M.I. Domínguez,
J.A. Odriozola, P. Quintana, Nitrate removal using natural
clays modified by acid thermoactivation, Appl. Surf. Sci.,
253 (2007) 5762–5766.
- A. Bhatnagar, M. Ji, Y.H. Choi, W. Jung, S.H. Lee, S.J. Kim,
G. Lee, H. Suk, H.S. Kim, B. Min, S.H. Kim, B.H. Jeon,
J.W. Kang, Removal of nitrate from water by adsorption onto
zinc chloride treated activated carbon, Sep. Sci. Technol.,
43 (2008) 886–907.
- K. Kaneko, N. Kosugi, H. Kuroda, Characterization of iron
oxide-dispersed activated carbon fibres with Fe
K-edge
XANES and EXAFS and with water adsorption, J. Chem. Soc.,
Faraday Trans. 1 F, 85 (1989) 869–881.
- W. Pan, R. Deng, Y. Cao, F. Xia, Q. Wu, L. Gu, Nitrate removal
from aqueous solution by activated carbon prepared from
shrimp shell, Desal. Water Treat, 229 (2021) 134–144.
- M.K. Uddin, A review on the adsorption of heavy metals
by clay minerals, with special focus on the past decade,
Chem. Eng. J., 308 (2016) 438–462.
- O. Abollino, A. Giacomino, M. Malandrino, E. Mentasti,
Interaction of metal ions with montmorillonite and vermiculite,
Appl. Clay Sci., 38 (2008) 227–236.
- S. Sharifnia, M. Khadivi, T. Shojaeimehr, Y. Shavisi,
Characterization, isotherm and kinetic studies for ammonium
ion adsorption by light expanded clay aggregate (LECA),
J. Saudi Chem. Soc., 20 (2016) S342–S351.
- LECA Catalogue, https://leca.asia/catalog/
- M. Malakootian, J. Nouri, H. Hossaini, Removal of heavy
metals from paint industry’s wastewater using LECA as an
available adsorbent, Int. J. Environ. Sci. Technol., 6 (2009)
183–190.
- M.N. Sepehr, H. Kazemian, E. Ghahramani, A. Amrane,
V. Sivasankar, M. Zarrabi, Defluoridation of water via
light weight expanded clay aggregate (LECA): adsorbent
characterization, competing ions, chemical regeneration,
equilibrium and kinetic modelling to cite this version, J. Taiwan
Inst. Chem. Eng., 45 (2014) 1821–1834.
- R. Dharani, A. Sivalingam, M. Thirumarimurugan, Utilization
of light weight expanded clay aggregate in wastewater
treatment – a review, Int. J. Emerg. Technol. Eng. Res. (IJETER),
4 (2016) 26–28.
- H. Amiri, N. Jaafarzadeh, M. Ahmadi, S.S. Martínez, Application
of LECA Modified with Fenton in arsenite and arsenate
removal as an adsorbent, Desalination, 272 (2011) 212–217.
- M.N. Sepehr, F. Allani, M. Zarrabi, M. Darvishmotevalli,
Y. Vasseghian, S. Fadaei, M. Mohammadian Fazli, Dataset for
adsorptive removal of tetracycline (TC) from aqueous solution
via natural light weight expanded clay aggregate (LECA)
and LECA coated with manganese oxide nanoparticles in the
presence of H2O2, Data Brief, 22 (2019) 676–686.
- M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent
iron (nZVI): from synthesis to environmental applications,
Chem. Eng. J., 287 (2016) 618–632.
- F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron
for groundwater remediation and wastewater treatment:
a review, J. Hazard. Mater, 267 (2014) 194–205.
- N.C. Mueller, J. Braun, J. Bruns, M. Černík, P. Rissing,
D. Rickerby, B. Nowack, Application of nanoscale zero
valent iron (NZVI) for groundwater remediation in Europe,
Environ. Sci. Pollut. Res., 19 (2012) 550–558.
- S. Khoshro, N.S. Mirbagheri, S. Sabbaghi, Removal of nitrate
from aqueous solution using nano zerovalent iron-reduced
graphene oxide composite: optimization of parameters,
Water Environ. J., 34 (2020) 608–621.
- M. Fernández-García, J.A. Rodriguez, Metal Oxide
Nanoparticles, Encyclopaedia of Inorganic Chemistry,
October 2009.
- K. Rasouli, A. Alamdari, S. Sabbaghi, Ultrasonic-assisted
synthesis of α-Fe2O3@TiO2 photo catalyst: optimization
of effective factors in the fabrication of photocatalyst and
removal of non-biodegradable cefixime via response surface
methodology-central composite design, Sep. Purif. Technol.,
307 (2022) 122799, doi: 10.1016/j.seppur.2022.122799.
- M. Ulfa, D. Prasetyoko, H. Bahruji, R.E. Nugraha, Green
synthesis of hexagonal hematite (α-Fe2O3) flakes using
Pluronic F127-gelatin template for adsorption and photodegradation
of ibuprofen, Materials, 14 (2021) 6779,
doi: 10.3390/ma14226779.
- M. Tanco, E. Viles, L. Ilzarbe, M.J. Alvarez, Dissecting DoE
Software, Six Sigma Forum Magazine, 2008.
- C.W. Fetter, Contaminant Hydrogeology, Macmillan
Publishing Company, New York, 1993.
- Malvern Ltd., Zeta Potential: An Introduction in 30 Minutes,
Zetasizer Nano Serles Tech. Note. MRK654-01, Vol. 2, 2011,
pp. 1–6.
- G.C. Velazquez-Peña, M. Solache-Ríos, V. Martínez-Miranda,
Competing effects of chloride, nitrate, and sulfate ions on the
removal of fluoride by a modified zeolitic tuff, Water Air Soil
Pollut., 226 (2015) 2236, doi: 10.1007/s11270-014-2236-y.
- N. Sato, Y. Amano, M. Machida, Adsorption characteristics
of nitrate ion by sodium carbonate activated PAN-based
activated carbon fiber, SN Appl. Sci., 4 (2022) 315, doi: 10.1007/s42452-022-05191-w.
- A. Battas, A. El Gaidoumi, A. Ksakas, A. Kherbeche, Adsorption
study for the removal of nitrate from water using local clay,
Sci. World J., 2019 (2019) 9529618, doi: 10.1155/2019/9529618.
- T. Iida, Y. Amano, M. Machida, F. Imazeki, Effect of surface
property of activated carbon on adsorption of nitrate ion,
Chem. Pharm. Bull., 61 (2013) 1173–1177.
- Y.H. Huang, T.C. Zhang, Effects of low pH on nitrate reduction
by iron powder, Water Res., 38 (2004) 2631–2642.
- N. Öztürk, T.E. Bektaş, Nitrate removal from aqueous solution
by adsorption onto various materials, J. Hazard. Mater.,
112 (2004) 155–162.