References

  1. M. Zendehbad, M. Mostaghelchi, M. Mojganfar, P. Cepuder, W. Loiskandl, Nitrate in groundwater and agricultural products: intake and risk assessment in northeastern Iran, Environ. Sci. Pollut. Res., 29 (2022) 78603–78619.
  2. WHO, Guidelines for Drinking-Water Quality, 4th ed., WHO Library Cataloguing-In-Publication Data, 2011.
  3. C. Su, R.W. Puls, Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: implications for groundwater nitrate remediation using permeable reactive barriers, Chemosphere, 67 (2007) 1653–1662.
  4. R.C. Scholes, M.A. Vega, J.O. Sharp, D.L. Sedlak, Nitrate removal from reverse osmosis concentrate in pilot-scale open-water unit process wetlands, Environ. Sci. Water Res. Technol., 7 (2021) 650–661.
  5. N. Arahman, S. Mulyati, M.R. Lubis, R. Takagi, H. Matsuyama, Removal performance of NO3 ion from groundwater by electrodialysis, AIP Conf. Proc., 1788 (2017) 030090, doi: 10.1063/1.4968343.
  6. I. Fux, L. Birnhack, S.C.N. Tang, O. Lahav, Removal of nitrate from drinking water by ion-exchange followed by nZVI-based reduction and electrooxidation of the ammonia product to N2(g), ChemEng., 1 (2017) 1–19.
  7. Y. Hwang, Kim, H. Shin, Mechanism study of nitrate reduction by nano zero valent iron, J. Hazard. Mater., 185 (2011) 1513–1521.
  8. M. Kumar, S. Chakraborty, Chemical denitrification of water by zero-valent magnesium powder, J. Hazard. Mater., 135 (2006) 112–121.
  9. Y. Zhang, G.B. Douglas, L. Pu, Q. Zhao, Y. Tang, W. Xu, B. Luo, W. Hong, L. Cui, Z. Ye, Zero-valent iron-facilitated reduction of nitrate: chemical kinetics and reaction pathways, Sci. Total Environ., 598 (2017) 1140–1150.
  10. MF. Dahab, S. Sirigina, Nitrate removal from water supplies using biodenitrification and GAC-sand filter system, Water Sci. Technol., 30 (1994) 133–139.
  11. C. Bucior, S. Dore, D. Pope, R. Thomas, W. Ghd, N. Falls, Enhanced denitrification for treatment of nitrate plumes associated with fertilizers: bioremediation and sustainable environmental technologies, (2017).
  12. S. Hashimoto, K. Furukawa, M. Shioyama, Autotrophic denitrification using elemental sulfur, J. Ferment. Technol., 65 (1987) 683–692.
  13. L.A. Schipper, M.V. Vuković, Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust, Ecol. Eng., 14 (2000) 269–278.
  14. N. Bleyen, S. Smets, J. Small, H. Moors, N. Leys, E. Valcke, A. Albrecht, P.D. Cannière, B. Schwyn, C. Wittebroodt, E. Valcke, Impact of the electron donor on in-situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland), Swiss J. Geosci., 110 (2017) 355–374.
  15. B.A. Till, L.J. Weathers, P.J.J. Alvarez, Fe(0)-supported autotrophic denitrification, Environ. Sci. Technol., 32 (1998) 634–639.
  16. P. Loganathan, S. Vigneswaran, J. Kandasamy, Enhanced removal of nitrate from water using surface modification of adsorbents - a review, J. Environ. Manage., 131 (2013) 363–374.
  17. Archna, S.K. Sharma, R.C. Sobti, Nitrate removal from ground water: a review, E-J. Chem., 9 (2012) 1667–1675.
  18. E. Bekhradinassab, S. Sabbaghi, Removal of nitrate from drinking water using nano SiO2-FeOOH-Fe core-shell, Desalination, 347 (2014) 1–9.
  19. B. Kamarehie, E. Aghaali, S.A. Mousavi, A. Jafari, Nitrate removal from aqueous solutions using granular activated carbon modified with iron nanoparticles, Int. J. Eng., 31 (2018) 554–563.
  20. M. Fazlzadeh, A. Sh, M. Vosoughi, R. Khosravi, A. Sadigh, Nitrate ion adsorption from aqueous solution by a novel local green montmorillonite adsorbent, J. Health, 8 (2017) 298–311.
  21. M. Abdelwaheb, K. Jebali, H. Dhaouadi, S.D. Dhaouadi, Adsorption of nitrate, phosphate, nickel and lead on soils: risk of groundwater contamination, Ecotoxicol. Environ. Saf., 179 (2019) 182–187.
  22. H.R. Pourzamani, N. Mengelīzadeh, M. Jalil, Nitrate removal from aqueous solutions by magnetic nanoparticle, J. Environ Health Sustainable Dev., 2 (2017) 187.
  23. C.J. Mena-Duran, M.R. Sun Kou, C.J. Mena-Duran, T. Lopez, J.A. Azamar Barrios, D.H. Aguilar, M.I. Domínguez, J.A. Odriozola, P. Quintana, Nitrate removal using natural clays modified by acid thermoactivation, Appl. Surf. Sci., 253 (2007) 5762–5766.
  24. A. Bhatnagar, M. Ji, Y.H. Choi, W. Jung, S.H. Lee, S.J. Kim, G. Lee, H. Suk, H.S. Kim, B. Min, S.H. Kim, B.H. Jeon, J.W. Kang, Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon, Sep. Sci. Technol., 43 (2008) 886–907.
  25. K. Kaneko, N. Kosugi, H. Kuroda, Characterization of iron oxide-dispersed activated carbon fibres with Fe
    K-edge XANES and EXAFS and with water adsorption, J. Chem. Soc., Faraday Trans. 1 F, 85 (1989) 869–881.
  26. W. Pan, R. Deng, Y. Cao, F. Xia, Q. Wu, L. Gu, Nitrate removal from aqueous solution by activated carbon prepared from shrimp shell, Desal. Water Treat, 229 (2021) 134–144.
  27. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2016) 438–462.
  28. O. Abollino, A. Giacomino, M. Malandrino, E. Mentasti, Interaction of metal ions with montmorillonite and vermiculite, Appl. Clay Sci., 38 (2008) 227–236.
  29. S. Sharifnia, M. Khadivi, T. Shojaeimehr, Y. Shavisi, Characterization, isotherm and kinetic studies for ammonium ion adsorption by light expanded clay aggregate (LECA), J. Saudi Chem. Soc., 20 (2016) S342–S351.
  30. LECA Catalogue, https://leca.asia/catalog/
  31. M. Malakootian, J. Nouri, H. Hossaini, Removal of heavy metals from paint industry’s wastewater using LECA as an available adsorbent, Int. J. Environ. Sci. Technol., 6 (2009) 183–190.
  32. M.N. Sepehr, H. Kazemian, E. Ghahramani, A. Amrane, V. Sivasankar, M. Zarrabi, Defluoridation of water via light weight expanded clay aggregate (LECA): adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modelling to cite this version, J. Taiwan Inst. Chem. Eng., 45 (2014) 1821–1834.
  33. R. Dharani, A. Sivalingam, M. Thirumarimurugan, Utilization of light weight expanded clay aggregate in wastewater treatment – a review, Int. J. Emerg. Technol. Eng. Res. (IJETER), 4 (2016) 26–28.
  34. H. Amiri, N. Jaafarzadeh, M. Ahmadi, S.S. Martínez, Application of LECA Modified with Fenton in arsenite and arsenate removal as an adsorbent, Desalination, 272 (2011) 212–217.
  35. M.N. Sepehr, F. Allani, M. Zarrabi, M. Darvishmotevalli, Y. Vasseghian, S. Fadaei, M. Mohammadian Fazli, Dataset for adsorptive removal of tetracycline (TC) from aqueous solution via natural light weight expanded clay aggregate (LECA) and LECA coated with manganese oxide nanoparticles in the presence of H2O2, Data Brief, 22 (2019) 676–686.
  36. M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent iron (nZVI): from synthesis to environmental applications, Chem. Eng. J., 287 (2016) 618–632.
  37. F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review, J. Hazard. Mater, 267 (2014) 194–205.
  38. N.C. Mueller, J. Braun, J. Bruns, M. Černík, P. Rissing, D. Rickerby, B. Nowack, Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe, Environ. Sci. Pollut. Res., 19 (2012) 550–558.
  39. S. Khoshro, N.S. Mirbagheri, S. Sabbaghi, Removal of nitrate from aqueous solution using nano zerovalent iron-reduced graphene oxide composite: optimization of parameters, Water Environ. J., 34 (2020) 608–621.
  40. M. Fernández-García, J.A. Rodriguez, Metal Oxide Nanoparticles, Encyclopaedia of Inorganic Chemistry, October 2009.
  41. K. Rasouli, A. Alamdari, S. Sabbaghi, Ultrasonic-assisted synthesis of α-Fe2O3@TiO2 photo catalyst: optimization of effective factors in the fabrication of photocatalyst and removal of non-biodegradable cefixime via response surface methodology-central composite design, Sep. Purif. Technol., 307 (2022) 122799, doi: 10.1016/j.seppur.2022.122799.
  42. M. Ulfa, D. Prasetyoko, H. Bahruji, R.E. Nugraha, Green synthesis of hexagonal hematite (α-Fe2O3) flakes using Pluronic F127-gelatin template for adsorption and photodegradation of ibuprofen, Materials, 14 (2021) 6779, doi: 10.3390/ma14226779.
  43. M. Tanco, E. Viles, L. Ilzarbe, M.J. Alvarez, Dissecting DoE Software, Six Sigma Forum Magazine, 2008.
  44. C.W. Fetter, Contaminant Hydrogeology, Macmillan Publishing Company, New York, 1993.
  45. Malvern Ltd., Zeta Potential: An Introduction in 30 Minutes, Zetasizer Nano Serles Tech. Note. MRK654-01, Vol. 2, 2011, pp. 1–6.
  46. G.C. Velazquez-Peña, M. Solache-Ríos, V. Martínez-Miranda, Competing effects of chloride, nitrate, and sulfate ions on the removal of fluoride by a modified zeolitic tuff, Water Air Soil Pollut., 226 (2015) 2236, doi: 10.1007/s11270-014-2236-y.
  47. N. Sato, Y. Amano, M. Machida, Adsorption characteristics of nitrate ion by sodium carbonate activated PAN-based activated carbon fiber, SN Appl. Sci., 4 (2022) 315, doi: 10.1007/s42452-022-05191-w.
  48. A. Battas, A. El Gaidoumi, A. Ksakas, A. Kherbeche, Adsorption study for the removal of nitrate from water using local clay, Sci. World J., 2019 (2019) 9529618, doi: 10.1155/2019/9529618.
  49. T. Iida, Y. Amano, M. Machida, F. Imazeki, Effect of surface property of activated carbon on adsorption of nitrate ion, Chem. Pharm. Bull., 61 (2013) 1173–1177.
  50. Y.H. Huang, T.C. Zhang, Effects of low pH on nitrate reduction by iron powder, Water Res., 38 (2004) 2631–2642.
  51. N. Öztürk, T.E. Bektaş, Nitrate removal from aqueous solution by adsorption onto various materials, J. Hazard. Mater., 112 (2004) 155–162.