References

  1. C. Bustillo-Lecompte, M. Mehrvar, E. Quiñones-Bolaños, Slaughterhouse wastewater characterization and treatment: an economic and public health necessity of the meat processing industry in Ontario, Canada, J. Geosci. Environ. Prot., 4 (2016) 175–186, doi: 10.4236/gep.2016.44021.
  2. C.J. Banks, Z. Wang, Treatment of Meat Wastes, In: Waste Treatment in the Food Processing Industry, 1st ed., CRC Press, United States, 2004, pp. 67–100.
  3. A. Gutiérrez-Sarabia, G. Fernandez-Villagómez, P. Martínez-Pereda, N. Rinderknecht-Seijas,
    H.M. Poggi-Varaldo, Slaughterhouse wastewater treatment in a full-scale system with constructed wetlands, Water Environ. Res., 76 (2004) 334–343.
  4. J.T. Nwabanne, C.C. Obi, Abattoir wastewater treatment by electrocoagulation using iron electrodes, Pelagia Res. Lib., 8 (2017) 254–260.
  5. I. Hamawand, Anaerobic digestion process and bio-energy in meat industry: a review and a potential, Renewable Sustainable Energy Rev., 44 (2015) 37–51.
  6. J. Li, M.G. Healy, X. Zhan, D. Norton, M. Rodgers, Effect of aeration rate on nutrient removal from slaughterhouse wastewater in intermittently aerated sequencing batch reactors, Water Air Soil Pollut., 192 (2008) 251–261.
  7. C. Bustillo-Lecompte, M. Mehrvar, Slaughterhouse Wastewater: Treatment, Management and Resource Recovery, R. Farooq, Z. Ahmad, Eds., Physico-Chemical Wastewater Treatment and Resource Recovery, InTechOpen, United Kingdom, 2017, pp. 153–174.
  8. G.Th. Kroyer, Impact of food processing on the environment — an overview, LWT Food Sci. Technol., 28 (1995) 547–552.
  9. V. Yargeau, Water and Wastewater Treatment: Chemical Processes, Metropolitan Sustainability: Understanding and Improving the Urban Environment, Woodhead Publishing Limited, Canada, 2012, pp. 390–405.
  10. R.D. Lettermann, A. Amirtharajah, C.R. O’Melia, Coagulation and Floculation, In: Water Quality and Treatment, 5th ed., United States, 2000, pp. 297–362.
  11. M.V.B. Gonçalves, S.C. De Oliveira, B.M.P.N. Abreu, E.M. Guerra, D.T. Cestarolli, Electrocoagulation/electroflotation process applied to decolourization of a solution containing the Dye Yellow Sirius K-CF, Int. J. Electrochem. Sci., 11 (2016) 7576–7583.
  12. B.S. Yildiz, Water and Wastewater Treatment: Biological Processes, In: Metropolitan Sustainability Understanding and Improving the Urban Environment, Woodhead Publishing Limited, United Kingdom, 2012, pp. 406–428.
  13. N. Oturan, M.A. Oturan, Chapter 8 – Electro-Fenton Process: Background, New Developments, and Applications, C.A. Martínez-Huitle, M.A. Rodrigo, O. Scialdone, Eds., Electrochemical Water and Wastewater Treatment, Butterworth- Heinemann, United Kingdom, 2018, pp. 193–221.
  14. D. Al deen Atallah Aljuboury, P. Palaniandy, H.A. Aziz, S. Feroz, A review on the fenton process for wastewater treatment, J. Innovative Eng., 2 (2014) 1–22.
  15. C.E. Barrera-Díaz, P. Balderas-Hernández, B. Bilyeu, Chapter 3 – Electrocoagulation: Fundamentals and Prospectives, C.A. Martínez-Huitle, M.A. Rodrigo, O. Scialdone, Eds., Electrochemical Water and Wastewater Treatment, Butterworth-Heinemann, United Kingdom, 2008, pp. 61–76.
  16. S.H. Abbas, W.H. Ali, Electrocoagulation technique used to treat wastewater: a review, Am. J. Eng. Res., 7 (2018) 74–88.
  17. S. Thakur, M.S. Chauhan, Treatment of wastewater by electrocoagulation: a review, Int. J. Eng. Sci. Innovative Technol., 5 (2016) 104–110.
  18. M. Eyvaz, Treatment of brewery wastewater with electrocoagulation: improving the process performance by using alternating pulse current, Int. J. Electrochem. Sci., 11 (2016) 4988–5008.
  19. F. Ghanbari, M. Moradi, A. Eslami, M.M. Emamjomeh, Electrocoagulation/flotation of textile wastewater with simultaneous application of aluminum and iron as anode, Environ. Processes, 1 (2014) 447–457.
  20. A.I. Adeogun, R.B. Balakrishnan, Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye rhodamine B from aqueous solution using steel electrodes, Appl. Water Sci., 7 (2017) 1711–1723.
  21. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  22. V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, Recent applications of electrocoagulation in treatment of water and wastewater—a review, Green Sustainable Chem., 3 (2013) 89–121, doi: 10.4236/gsc.2013.32013.
  23. S. Ibrahim, N.S.M. Aris, B. Ariffin, Y. Hawari, M.A.K.M. Hanafiah, Application of electrocoagulation process for decolourisation of palm oil mill effluent (POME), Nat. Environ. Pollut. Technol.: An Int. Q. Sci. J., 17 (2018) 1267–1271.
  24. B.M.B. Ensano, L. Borea, V. Naddeo, V. Belgiorno, M.D.G. De Luna, F.C. Ballesteros, Removal of pharmaceuticals from wastewater by intermittent electrocoagulation, Water, 9 (2017) 85, doi: 10.3390/w9020085.
  25. E. Bazrafshan, F.K. Mostafapour, M. Farzadkia, K.A. Ownagh, A.H. Mahvi, Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process, PLoS One, 7 (2012) e40108, doi: 10.1371/journal.pone.0040108.
  26. H. Liu, X. Zhao, J. Qu, Electrocoagulation in Water Treatment, In: Electrochemistry for the Environment, Springer, USA, 2010, pp. 245–262.
  27. I. Linares-Hernández, C. Barrera-Díaz, G. Roa-Morales, B. Bilyeu, F. Ureña-Núñez, Influence of the anodic material on electrocoagulation performance, Chem. Eng. J., 148 (2009) 97–105.
  28. A.A. Al-Raad, M.M. Hanafiah, A.S. Naje, M.A. Ajeel, A.O. Basheer, T.A. Aljayashi, M.E. Toriman, Treatment of saline water using electrocoagulation with combined electrical connection of electrodes, Processes, 7 (2019) 242, doi: 10.3390/ pr7050242.
  29. W. Reátegui-Romero, L.V. Flores-Del Pino, J.L. Guerrero-Guevara, J. Castro-Torres, L.M. Rea-Marcos,
    M.E. King-Santos, R. Yuli-Posadas, Benefits of electrocoagulation in treatment of wastewater: removal of Fe and Mn metals, oil and grease and COD: three case studies, Int. J. Appl. Eng. Res., 13 (2018) 6450–6462.
  30. M. Kobya, O.T. Can, M. Bayramoglu, Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes, J. Hazard. Mater., 100 (2003) 163–178.
  31. O.T. Can, M. Kobya, E. Demirbas, M. Bayramoglu, Treatment of the textile wastewater by combined electrocoagulation, Chemosphere, 62 (2006) 181–187.
  32. H. Tounsi, T. Chaabane, K. Omine, V. Sivasankar, H. Sano, M. Hecini, A. Darchen, Electrocoagulation in the dual application on the simultaneous removal of fluoride and nitrate anions through respective adsorption/reduction processes and modelling of continuous process, J. Water Process Eng., 46 (2022) 102584, doi: 10.1016/j.jwpe.2022.102584.
  33. W. Reátegui-Romero, S.A. Tuesta-Tinoco, C.E. Ochoa De la Cruz, J.A. Huamán-Ccopa, M.E. King-Santos, E.F. Estrada-Huamaní, W. Bulege-Gutierrez, R.A. Yuli-Posadas, V. Fernández-Guzmán, Electrocoagulation in batch mode for the removal of the chemical oxygen demand of an effluent from slaughterhouse wastewater in Lima Peru: Fe and Al electrodes, Desal. Water Treat., 202 (2020) 206–218.
  34. A.I. Adeogun, R.B. Balakrishnan, Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye rhodamine B from aqueous solution using steel electrodes, Appl. Water Sci., 7 (2015) 1711–1723.
  35. E. Ajenifuja, J.A. Ajao, E.O.B. Ajayi, Adsorption isotherm studies of Cu(II) and Co(II) in high concentration aqueous solutions on photocatalytically modified diatomaceous ceramic adsorbents, Appl. Water Sci., 7 (2017) 3793–3801.
  36. T.R. Sahoo, B. Prelot, Chapter 7 – Adsorption Processes for the Removal of Contaminants From Wastewater: The Perspective Role of Nanomaterials and Nanotechnology, B. Bonelli, F.S. Freyria, I. Rossetti, R. Sethi, Eds., Nanomaterials for the Detection and Removal of Wastewater Pollutants: Micro and Nano Technologies, Elsevier, United States, 2020, pp. 161–222.
  37. A.S. Yusuff, L.T. Popoola, E.O. Babatunde, Adsorption of cadmium ion from aqueous solutions by
    copper-based metal organic framework: equilibrium modeling and kinetic studies, Appl. Water Sci., 9 (2019) 106, doi: 10.1007/s13201-019-0991-z.
  38. C.N. Owabor, I.O. Oboh, Kinetic study and artificial neural network modeling of the adsorption of naphthalene on grafted clay, J. Eng. Res., 16 (2012) 41–51.
  39. B. Nagy, C. Mânzatu, A. Măicăneanu, C. Indolean, B.-T. Lucian, C. Majdik, Linear and non-linear regression analysis for heavy metals removal using Agaricus bisporus macrofungus, Arabian J. Chem., 10 (2017) S3569–S3579.
  40. E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using pseudo-first order and pseudo-second-order rate laws: a review, Cleaner Eng. Technol., 1 (2020) 100032, doi: 10.1016/j.clet.2020.100032.
  41. K.D. Kowanga, E. Gatebe, G.O. Mauti, E.M. Mauti, Kinetic, sorption isotherms, pseudo-first-order model and pseudosecond- order model studies of Cu(II) and Pb(II) using defatted Moringa oleifera seed powder, J. Phytopharmacol., 5 (2016) 71–78.
  42. H. Yuh-Shan, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (2004) 171–177.
  43. Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Methods, 29 (2000) 189–232.
  44. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens, 24 (1898) 1–39.
  45. A. Othmani, A. Kesraoui, M. Seffen, The alternating and direct current effect on the elimination of cationic and anionic dye from aqueous solutions by electrocoagulation and coagulation flocculation, Euro-Mediterr. J. Environ. Integr., 2 (2017) 1–12, doi: 10.1007/s41207-017-0016-y.
  46. S. Lyubchik, E. Lygina, A.I. Lyubchyk, S.B. Lyubchik, J.M. Loureiro, I.M. Fonseca, A.B. Ribeiro, M.M. Pinto,
    A.M. Sá Figueiredo, The Kinetic Parameters Evaluation for the Adsorption Processes at “Liquid–Solid” Interface, A.B. Ribeiro, E.P. Mateus, N. Couto, Eds., Electrokinetics Across Disciplines and Continents. New Strategies for Sustainable Development, Springer International Publishing, Switzerland, 2016, pp. 81–109.
  47. Y.-S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  48. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  49. P. Ganesan, J. Lakshmi, G. Sozhan, S. Vasudevan, Removal of manganese from water by electrocoagulation: adsorption, kinetics and thermodynamic studies, Can. J. Chem. Eng., 91 (2013) 1–11, doi: 10.1002/cjce.21709.
  50. X.-Y. Yang, B. Al-Duri, Application of branched pore diffusion model in the adsorption of reactive dyes on activated carbon, Chem. Eng. J., 83 (2001) 15–23.
  51. R.E. Lyon, An integral method of non-isothermal kinetic analysis, Thermochim. Acta, 297 (1997) 117–124.
  52. M.S. Hellal, H.S. Doma, E.M. Abou-Taleb, Techno-economic evaluation of electrocoagulation for cattle slaughterhouse wastewater treatment using aluminum electrodes in batch and continuous experiment, Sustainable Environ. Res., 33 (2023) 1–12, doi: 10.1186/s42834-023-00163-0.
  53. T.L. Benazzi, M. Di Luccio, R.M. Dallago, J. Steffens, R. Mores, M.S. Do Nascimento, J. Krebs, G. Ceni, Continuous flow electrocoagulation in the treatment of wastewater from dairy industries, Water Sci. Technol., 73 (2016) 1418–1425.
  54. S.R. Tchamango, K.W. Ngayo, P.D.B. Belibi, F. Nkouam, M.B. Ngassoum, Treatment of a dairy effluent by classical electrocoagulation and indirect electrocoagulation with aluminum electrodes, Sep. Sci. Technol., 56 (2021) 1128–1139.
  55. M. Kobya, O.T. Can, M. Bayramoglu, Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes, J. Hazard. Mater., 100 (2003) 163–178.
  56. G. Mouedhen, M. Feki, M. De Petris Wery, H.F. Ayedi, Behavior of aluminum electrodes in electrocoagulation process, J. Hazard. Mater., 150 (2008) 124–135.
  57. X. Chen, G. Chen, P.L. Yue, Separation of pollutants from restaurant wastewater by electrocoagulation, Sep. Purif. Technol., 19 (2000) 65–76.
  58. H. Liu, X. Zhao, J. Qu, Electrocoagulation in Water Treatment, in Electrochemistry for the Environment, Springer, USA, 2010, pp. 245–262.
  59. A.K. Prajapati, P.K. Chaudhari, Physicochemical treatment of distillery wastewater—a review, Chem. Eng. Commun., 202 (2015) 1098–1117.
  60. S.U. Khan, M. Khalid, K. Hashim, M.H. Jamadi, M. Mousazadeh, F. Basheer, I.H. Farooqi, Efficacy of electrocoagulation treatment for the abatement of heavy metals: an overview of critical processing factors, kinetic models and cost analysis, Sustainability, 15 (2023) 1708, doi: 10.3390/su15021708.
  61. R. Soni, S. Bhardwaj, D.P. Shukla, Chapter 14 – Various Water- Treatment Technologies for Inorganic Contaminants: Current Status and Future Aspects, P. Devi, P. Singh, S.K. Kansal, Eds., Inorganic Pollutants in Water, Elsevier, United States, 2020, pp. 273–295.
  62. H. Hu, K. Xu, Chapter 8 – Physicochemical Technologies for HRPs and Risk Control, H. Ren, X. Zhang, Eds., High- Risk Pollutants in Wastewater, Nanjing, China, Elsevier, United States, 2020, pp. 169–207.
  63. L.Shi, Z. Han, Y. Feng, C. Zhang, Q. Zhang, H. Zhu, S. Zhu, Joule heating of ionic conductors using zero-phase frequency alternating current to suppress electrochemical reactions, Engineering, 25 (2023) 138–143.
  64. D. Ghernaout, A.S. Alghamdi, B. Ghernaout, Electrocoagulation process: a mechanistic review at the dawn of its modeling, J. Environ. Sci. Allied Res., 2 (2019) 22–38.
  65. L.P. Cappato, M.V.S. Ferreira, J.T. Guimaraes, J.B. Portela, A.L.R. Costa, M.Q. Freitas, R.L. Cunha, C.A.F. Oliveira, G.D. Mercali, L.D.F. Marzack, A.G. Cruz, Ohmic heating in dairy processing: Relevant aspects for safety and quality, Trends Food Sci. Technol., 62 (2017) 104–112.
  66. M.A. Musa, S. Idrus, Effect of hydraulic retention time on the treatment of real cattle slaughterhouse wastewater and biogas production from HUASB reactor, Water, 12 (2020) 490, doi: 10.3390/w12020490.
  67. Y.D. Sağsöz, A.E. Yilmaz, F.E. Torun, B. Kocadağistan, S. Kul, The investigation of COD treatment and energy consumption of urban wastewater by a continuous electrocoagulation system, J. Electrochem. Sci. Technol., 13 (2022) 261–268.
  68. M. Wu, Y. Hu, R. Liu, S. Lin, W. Sun, H. Lu, Electrocoagulation method for treatment and reuse of sulphide mineral processing wastewater: characterization and kinetics, Sci. Total Environ., 696 (2019) 134063, doi: 10.1016/j.scitotenv.2019.134063.
  69. S. Kumari, R. Naresh Kumar, River water treatment by continuous electrocoagulation: insights into removal of acetaminophen, and natural organic matter, Water Supply, 22 (2022) 4055–4066.
  70. P. Kumar, T. Nawaz, S.P. Singh, Evaluation and optimization of electrocoagulation process parameters for the treatment of oil drill site wastewater, Chem. Eng. Ind. Chem., 1 (2022) 1–28.