References

  1. M. Puri, K. Gandhi, M.S. Kumar, Emerging environmental contaminants: a global perspective on policies and regulations, J. Environ. Manage., 332 (2023) 117344, doi: 10.1016/j.jenvman.2023.117344.
  2. U. Pöschl, M. Shiraiwa, Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene, Chem. Rev., 115 (2015) 4440–4475.
  3. M. Kampa, E. Castanas, Human health effects of air pollution, Environ. Pollut., 151 (2008) 362–367.
  4. Z. Zhang, J. Chen, Y. Gao, Z. Ao, G. Li, T. An, Y. Hu, Y. Li, A coupled technique to eliminate overall nonpolar and polar volatile organic compounds from paint production industry, J. Cleaner Prod., 185 (2018) 266–274.
  5. J. Tang, T. An, J. Xiong, G. Li, The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China, Environ. Geochem. Health, 39 (2017) 1487–1499.
  6. H.K. Okoro, J.O. Ige, O.A. Iyiola, J.C. Ngila, Fractionation profile, mobility patterns and correlations of heavy metals in estuary sediments from Olonkoro river, in tede catchment of western region, Nigeria, Environ. Nanotechnol. Monit. Manage., 8 (2017) 53–62.
  7. A. Daripa, L.C. Malav, D.K. Yadav, S. Chattaraj, Chapter 7 - Metal Contamination in Water Resources Due to Various Anthropogenic Activities, S.K. Shukla, S. Kumar, S. Madhav, P.K. Mishra, Eds., Metals in Water: Global Sources, Significance, and Treatment Advances in Environmental Pollution Research, Elsevier, Amsterdam, 2023, pp. 111–127.
  8. J.L. Adgate, B.D. Goldstein, L.M. McKenzie, Potential public health hazards, exposures and health effects from unconventional natural gas development, Environ. Sci. Technol., 48 (2014) 8307–8320.
  9. L.F. Liotta, Catalytic oxidation of volatile organic compounds on supported noble metals, Appl. Catal., B, 100 (2010) 403–412.
  10. G.-L. Wei, X.-L. Liang, D.-Q. Li, M.-N. Zhuo, S.-Y. Zhang, Q.-X. Huang, Y.-S. Liao, Z.-Y. Xie, T.-L. Guo, Z.-J. Yuan, Occurrence, fate and ecological risk of chlorinated paraffins in Asia: a review, Environ. Int., 92–93 (2016) 373–387.
  11. M.A. Bari, W.B. Kindzierski, Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: sources and screening health risk assessment, Environ. Pollut., 235 (2018) 602–614.
  12. S. Mentese, D. Tasdibi, Assessment of residential exposure to volatile organic compounds (VOCs) and carbon dioxide (CO2), Global Nest J., 19 (2017) 726–732.
  13. Z. Guo, R. Ma, G. Li, Degradation of phenol by nanomaterial TiO2 in wastewater, Chem. Eng. J., 119 (2006) 55–59.
  14. J. Chen, Z. He, G. Li, T. An, H. Shi, Y. Li, Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene, Appl. Catal., B, 209 (2017) 146–154.
  15. M. Yao, Y. Ji, H. Wang, Z. Ao, G. Li, T. An, Adsorption mechanisms of typical carbonyl-containing volatile organic compounds on anatase TiO2 (001) surface: a DFT investigation, J. Phys. Chem. C, 121 (2017) 13717–13722.
  16. C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev., 35 (2006) 1324–1340.
  17. B. Ramesh, A. Saravanan, P. Senthil Kumar, P.R. Yaashikaa, P. Thamarai, A. Shaji, G. Rangasamy, A review on algae biosorption for the removal of hazardous pollutants from wastewater: limiting factors, prospects and recommendations, Environ. Pollut., 327 (2023) 121572, doi: 10.1016/j.envpol.2023.121572.
  18. H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide photocatalysis in atmospheric chemistry, Chem. Rev., 112 (2012) 5919–5948.
  19. S. Wu, X. Nie, Z. Wang, Z. Yu, F. Huang, Magnetron sputtering engineering of typha-like carbon nanofiber interlayer integrating brush filter and chemical adsorption for Li–S batteries, Carbon N. Y., 201 (2023) 285–294.
  20. E. Barea, C. Montoro, J.A.R. Navarro, Toxic gas removal-metal–organic frameworks for the capture and degradation of toxic gases and vapours, Chem. Soc. Rev., 43 (2014) 5419–5430.
  21. N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal–organic frameworks (MOFs): a review, J. Hazard. Mater., 244–245 (2013) 444–456.
  22. R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, S. Horike, M. Takata, Guest Shape-responsive fitting of porous coordination polymer with shrinkable framework, J. Am. Chem. Soc., 126 (2004) 14063–14070.
  23. W. Huang, Y. Zhang, D. Li, Adsorptive removal of phosphate from water using mesoporous materials: a review, J. Environ. Manage., 193 (2017) 470–482.
  24. X.D. Zhang, Y. Wang, Y.Q. Yang, D. Chen, Recent progress in the removal of volatile organic compounds by mesoporous silica materials and supported catalysts, Wuli Huaxue Xuebao/Acta Phys. Chim. Sin., 31 (2015) 1633–1646.
  25. Z. Guo, J. Huang, Z. Xue, X. Wang, Electrospun graphene oxide/carbon composite nanofibers with well-developed mesoporous structure and their adsorption performance for benzene and butanone, Chem. Eng. J., 306 (2016) 99–106.
  26. S.M. Manocha, Porous carbons, Sadhana - Acad. Proc. Eng. Sci., 28 (2003) 335–348.
  27. D. Thatikayala, M.T. Noori, B. Min, Zeolite-modified electrodes for electrochemical sensing of heavy metal ions – progress and future directions, Mater. Today Chem., 29 (2023) 101412, doi: 10.1016/j.mtchem.2023.101412.
  28. G. Férey, Hybrid porous solids: past, present, future, Chem. Soc. Rev., 37 (2008) 191–214.
  29. M. Wen, Y. Kuwahara, K. Mori, D. Zhang, H. Li, H. Yamashita, Synthesis of Ce ions doped metal–organic framework for promoting catalytic H2 production from ammonia borane under visible light irradiation, J. Mater. Chem. A, 3 (2015) 14134–14141.
  30. M. Wen, Y. Cui, Y. Kuwahara, K. Mori, H. Yamashita, Non-noblemetal nanoparticle supported on metal–organic framework as an efficient and durable catalyst for promoting H2 production from ammonia borane under visible light irradiation, ACS Appl. Mater. Interfaces, 8 (2016) 21278–21284.
  31. J.-L. Wang, C. Wang, W. Lin, Metal–organic frameworks for light harvesting and photocatalysis, ACS Catal., 2 (2012) 2630–2640.
  32. J. Seo, R. Matsuda, H. Sakamoto, C. Bonneau, S. Kitagawa, A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules, J. Am. Chem. Soc., 131 (2009) 12792–12800.
  33. T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. - A Eur. J., 10 (2004) 1373–1382.
  34. A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.A. Fischer, Flexible metal–organic frameworks, Chem. Soc. Rev., 43 (2014) 6062–6096.
  35. Z.J. Lin, J. Lü, M. Hong, R. Cao, Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications, Chem. Soc. Rev., 43 (2014) 5867–5895.
  36. O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın,
    J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?, J. Am. Chem. Soc., 134 (2012) 15016–15021.
  37. A. Demessence, D.M. D’Alessandro, M.L. Foo, J.R. Long, Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine, J. Am. Chem. Soc., 131 (2009) 8784–8786.
  38. X.-Y. Lin, Y.-H. Li, M.-Y. Qi, Z.-R. Tang, H.-L. Jiang, Y.-J. Xu, A unique coordination-driven route for the precise nanoassembly of metal sulfides on metal–organic frameworks, Nanoscale Horiz., 5 (2020) 714–719.
  39. X.-Y. Lin, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Photochemical dehydrogenation of N-heterocycles over MOF-supported CdS nanoparticles with nickel modification, Appl. Catal., B, 317 (2022) 121708, doi: 10.1016/j.apcatb.2022.121708.
  40. A.S. Malik, D. Letson, S.R. Crutchfield, Point/nonpoint source trading of pollution abatement: choosing the right trading ratio, Am. J. Agric. Econ., 75 (1993) 959–967.
  41. Y. Yang, B. Yan, W. Shen, Assessment of point and nonpoint sources pollution in Songhua River Basin, Northeast China by using revised water quality model, Chin. Geogr. Sci., 20 (2010) 30–36.
  42. S.R. Carpenter, N.F. Caraco, D.L. Correll, R.W. Howarth, A.N. Sharpley, V.H. Smith, Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol. Appl., 8 (1998) 559–568.
  43. N. Štambuk-Giljanović, The Pollution load by nitrogen and phosphorus IN the Jadro River, Environ. Monit. Assess., 123 (2006) 13–30.
  44. V. Kertész, G. Bakonyi, B. Farkas, Water pollution by Cu and Pb can adversely affect mallard embryonic development, Ecotoxicol. Environ. Saf., 65 (2006) 67–73.
  45. W. Ouyang, H. Huang, F. Hao, Y. Shan, B. Guo, Evaluating spatial interaction of soil property with non‐point source pollution at watershed scale: the phosphorus indicator in Northeast China, Sci. Total Environ., 432 (2012) 412–421.
  46. J. Cheng, T. Yuan, W. Wang, J. Jia, X. Lin, L. Qu, Z. Ding, Mercury pollution in two typical areas in Guizhou Province, China and its neurotoxic effects in the brains of rats fed with local polluted rice, Environ. Geochem. Health, 28 (2006) 499–507.
  47. R. Lohmann, K. Breivik, J. Dachs, D. Muir, Global fate of POPs: current and future research directions, Environ. Pollut., 150 (2007) 150–165.
  48. K. Breivik, R. Alcock, Y.-F. Li, R.E. Bailey, H. Fiedler, J.M. Pacyna, Primary sources of selected POPs: regional and global scale emission inventories, Environ. Pollut., 128 (2004) 3–16.
  49. C.A. Basar, A. Karagunduz, A. Cakici, B. Keskinler, Removal of surfactants by powdered activated carbon and microfiltration, Water Res., 38 (2004) 2117–2124.
  50. K. Hunger, Industrial Dyes: Chemistry, Properties, Wiley, London, 2003.
  51. J. Michałowicz, W. Duda, Phenols - sources and toxicity, Pol. J. Environ. Stud., 16 (2007) 347–362.
  52. L. Theodore, Heat Transfer Applications for the Practicing Engineer, John Wiley & Sons, Ltd., Hoboken, NJ, USA, 2011.
  53. Y.-S. Ho, W.-T. Chiu, C.-C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust, Bioresour. Technol., 96 (2005) 1285–1291.
  54. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  55. G. Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater Engineering: Treatment and Reuse, 4th ed., McGraw-Hill, Boston, 2003.
  56. C.A. Toles, W.E. Marshall, M.M. Johns, L.H. Wartelle, A. McAloon, Acid-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production, Bioresour. Technol., 71 (2000) 87–92.
  57. C.A. Toles, W.E. Marshall, M.M. Johns, Phosphoric acid activation of nutshells for metals and organic remediation: process optimization, J. Chem. Technol. Biotechnol., 72 (1998) 255–263.
  58. M.M. Johns, W.E. Marshall, C.A. Toles, Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics, J. Chem. Technol. Biotechnol., 71 (1998) 131–140.
  59. S.A. Dastgheib, D.A. Rockstraw, Pecan shell activated carbon: synthesis, characterization, and application for the removal of copper from aqueous solution, Carbon N. Y., 39 (2001) 1849–1855.
  60. L.H. Wartelle, W.E. Marshall, Nutshells as granular activated carbons: physical, chemical and adsorptive properties, J. Chem. Technol. Biotechnol., 76 (2001) 451–455.
  61. T.S. Anirudhan, S.S. Sreekumari, Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons, J. Environ. Sci., 23 (2011) 1989–1998.
  62. M. Ullah, R. Nazir, M. Khan, W. Khan, M. Shah, S.G. Afridi, A. Zada, The effective removal of heavy metals from water by activated carbon adsorbents of Albizia lebbeck and Melia azedarach seed shells, Soil Water Res., 15 (2020) 30–37.
  63. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56–58.
  64. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363 (1993) 605–607.
  65. S.-H. Hsieh, J.-J. Horng, Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles, J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 14 (2007) 77–84.
  66. A. Stafiej, K. Pyrzynska, Solid phase extraction of metal ions using carbon nanotubes, Microchem. J., 89 (2008) 29–33.
  67. G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif. Technol., 58 (2007) 224–231.
  68. R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc., 123 (2001) 2058–2059.
  69. X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia, Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes, Chem. Phys. Lett., 376 (2003) 154–158.
  70. C. Lu, C. Liu, G.P. Rao, Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon, J. Hazard. Mater., 151 (2008) 239–246.
  71. F. Fornasiero, H.G. Park, J.K. Holt, M. Stadermann, C.P. Grigoropoulos, A. Noy, O. Bakajin, Ion exclusion
    by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 17250–17255.
  72. N. Savage, M.S. Diallo, Nanomaterials and water purification: opportunities and challenges, J. Nanopart. Res., 7 (2005) 331–342.
  73. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature, 490 (2012) 192–200.
  74. W. Gao, M. Majumder, L.B. Alemany, T.N. Narayanan, M.A. Ibarra, B.K. Pradhan, P.M. Ajayan, Engineered graphite oxide materials for application in water purification, ACS Appl. Mater. Interfaces, 3 (2011) 1821–1826.
  75. P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Mater. Today, 15 (2012) 86–97.
  76. L. Xu, J. Wang, The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater, Crit. Rev. Env. Sci. Technol., 47 (2017) 1042–1105.
  77. Q. Qin, Q. Wang, D. Fu, J. Ma, An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ, Chem. Eng. J., 172 (2011) 68–74.
  78. G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol., 45 (2011) 10454–10462.
  79. F. Arshad, M. Selvaraj, J. Zain, F. Banat, M.A. Haija, Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions, Sep. Purif. Technol., 209 (2019) 870–880.
  80. D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sánchez, Graphenebased microbots for toxic heavy metal removal and recovery from water, Nano Lett., 16 (2016) 2860–2866.
  81. M. Inada, Y. Eguchi, N. Enomoto, J. Hojo, Synthesis of zeolite from coal fly ashes with different silica–alumina composition, Fuel, 84 (2005) 299–304.
  82. X. Querol, N. Moreno, J.C. Umaa, R. Juan, S. Hernndez, C. Fernandez-Pereira, C. Ayora, M. Janssen, J. Garca-Martnez, A. Linares-Solano, D. Cazorla-Amoros, Application of zeolitic material synthesised from fly ash to the decontamination of waste water and flue gas, J. Chem. Technol. Biotechnol., 77 (2002) 292–298.
  83. L. Bandura, M. Franus, G. Józefaciuk, W. Franus, Synthetic zeolites from fly ash as effective mineral sorbents for landbased petroleum spills cleanup, Fuel, 147 (2015) 100–107.
  84. B. Szala, T. Bajda, J. Matusik, K. Zięba, B. Kijak, BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA, Microporous Mesoporous Mater., 202 (2015) 115–123.
  85. I.G. Stefanova, Natural Sorbents as Barriers Against Migration of Radionuclides from Radioactive Waste Repositories BT, P. Misaelides, F. Macášek, T.J. Pinnavaia, C. Colella, Eds., Natural Microporous Materials in Environmental Technology, Springer, Netherlands, Dordrecht, 1999, pp. 371–379.
  86. L. Sörme, A. Lindqvist, H. Söderberg, Capacity to influence sources of heavy metals to wastewater treatment sludge, Environ. Manage., 31 (2003) 421–428.
  87. T. Lee, L. Deog-Bae, L. Kyeong-Bo, H. Sang-Bok, H. Sang-Soo, Sorption of heavy metals from the wastewater by the artificial zeolite, Korean J. Soil Sci. Fert., 31 (1998) 61–66.
  88. C. Haidouti, Inactivation of mercury in contaminated soils using natural zeolites, Sci. Total Environ., 208 (1997) 105–109.
  89. J. Morency, Zeolite sorbent that effectively removes mercury from flue gases, Filtr. Sep., 39 (2002) 24–26.
  90. M. Wdowin, M.M. Wiatros-Motyka, R. Panek, L.A. Stevens, W. Franus, C.E. Snape, Experimental study of mercury removal from exhaust gases, Fuel, 128 (2014) 451–457.
  91. M.W. Ackley, S.U. Rege, H. Saxena, Application of natural zeolites in the purification and separation of gases, Microporous Mesoporous Mater., 61 (2003) 25–42.
  92. G. Zhao, X. Huang, Z. Tang, Q. Huang, F. Niu, X. Wang, Polymerbased nanocomposites for heavy metal ions removal from aqueous solution: a review, Polym. Chem., 9 (2018) 3562–3582.
  93. F. Lu, D. Astruc, Nanomaterials for removal of toxic elements from water, Coord. Chem. Rev., 356 (2018) 147–164.
  94. Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3–4 (2016) 22–39.
  95. G.N. Manju, K. Anoop Krishnan, V.P. Vinod, T.S. Anirudhan, An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron(III) oxide, J. Hazard. Mater., 91 (2002) 221–238.
  96. A. Afshar, S.A.S. Sadjadi, A. Mollahosseini, M.R. Eskandarian, Polypyrrole-polyaniline/Fe3O4 magnetic nanocomposite for the removal of Pb(II) from aqueous solution, Korean J. Chem. Eng., 33 (2016) 669–677.
  97. J. Cai, M. Lei, Q. Zhang, J.-R. He, T. Chen, S. Liu, S.-H. Fu, T.-T. Li, G. Liu, P. Fei, Electrospun composite nanofiber mats of cellulose@organically modified montmorillonite for heavy metal ion removal: design, characterization, evaluation of absorption performance, Composites, Part A, 92 (2017) 10–16.
  98. Suman, A. Kardam, M. Gera, V.K. Jain, A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles, Environ. Technol., 36 (2015) 706–714.
  99. A.H.A. Saad, A.M. Azzam, S.T. El-Wakeel, B.B. Mostafa, M.B. Abd El-latif, Removal of toxic metal ions from wastewater using ZnO@chitosan core-shell nanocomposite, Environ. Nanotechnol. Monit. Manage., 9 (2018) 67–75.
  100. S. Gokila, T. Gomathi, P.N. Sudha, S. Anil, Removal of the heavy metal ion chromiuim(VI) using chitosan and alginate nanocomposites, Int. J. Biol. Macromol., 104 (2017) 1459–1468.
  101. G. Lofrano, M. Carotenuto, G. Libralato, R.F. Domingos, A. Markus, L. Dini, R.K. Gautam, D. Baldantoni, M. Rossi, S.K. Sharma, M.C. Chattopadhyaya, M. Giugni, S. Meric, Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview, Water Res., 92 (2016) 22–37.
  102. H.C.J. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs), Chem. Soc. Rev., 43 (2014) 5415–5418.
  103. P. Kumar, V. Bansal, K.-H. Kim, E.E. Kwon, Metal–organic frameworks (MOFs) as futuristic options for wastewater treatment, J. Ind. Eng. Chem., 62 (2018) 130–145.
  104. L.P. Wang, G.Y. Wang, F. Wang, P.H. Wang, Effect of different aromatic carboxylic acid ligands on the catalytic activities of metal–organic frameworks, Adv. Mater. Res., 634–638 (2013) 513–517.
  105. K. Kowalski, Ferrocenyl-nucleobase complexes: Synthesis, chemistry and applications, Coord. Chem. Rev., 317 (2016) 132–156.
  106. Y. Bian, N. Xiong, G. Zhu, Technology for the remediation of water pollution: a review on the fabrication of metal–organic frameworks, Processes, 6 (2018) 1–22.
  107. W. Liu, H. Chen, 1D energetic metal–organic frameworks: synthesis and properties, Cailiao Daobao/Mater. Rev., 32 (2018) 223–227.
  108. J. Dai, X. Xiao, S. Duan, J. Liu, J. He, J. Lei, L. Wang, Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water, Chem. Eng. J., 331 (2018) 64–74.
  109. H. Guo, Z. Zheng, Y. Zhang, H. Lin, Q. Xu, Highly selective detection of Pb2+ by a nanoscale Ni-based metal–organic framework fabricated through one-pot hydrothermal reaction, Sens. Actuators, B, 248 (2017) 430–436.
  110. S. Kitagawa, M. Kondo, Functional micropore chemistry of crystalline metal complex-assembled compounds, Bull. Chem. Soc. Jpn., 71 (1998) 1739–1753.
  111. Z. Wang, S.M. Cohen, Postsynthetic modification of metal–organic frameworks, Chem. Soc. Rev., 38 (2009) 1315–1329.
  112. S.M. Cohen, Postsynthetic methods for the functionalization of metal–organic frameworks, Chem. Rev., 112 (2012) 970–1000.
  113. J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev., 43 (2014) 6011–6061.
  114. B. Li, H.-M. Wen, W. Zhou, B. Chen, Porous Metal–organic frameworks for gas storage and separation: what, how, and why?, J. Phys. Chem. Lett., 5 (2014) 3468–3479.
  115. B. Li, H. Wang, B. Chen, Microporous metal–organic frameworks for gas separation, Chem. - An Asian J., 9 (2014) 1474–1498.
  116. Y. Huang, S.C. Lee, K.F. Ho, S.S.H. Ho, N. Cao, Y. Cheng, Y. Gao, Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products, Atmos. Environ., 59 (2012) 224–231.
  117. B.O. Bolaji, Z. Huan, Ozone depletion and global warming: case for the use of natural refrigerant – a review, Renewable Sustainable Energy Rev., 18 (2013) 49–54.
  118. G.W. Peterson, G.W. Wagner, A. Balboa, J. Mahle, T. Sewell, C.J. Karwacki, Ammonia vapor removal by Cu3(BTC)2 and its characterization by MAS NMR, J. Phys. Chem. C, 113 (2009) 13906–13917.
  119. P.A. Kobielska, A.J. Howarth, O.K. Farha, S. Nayak, Metal–organic frameworks for heavy metal removal from water, Coord. Chem. Rev., 358 (2018) 92–107.
  120. M.J. Katz, A.J. Howarth, P.Z. Moghadam, J.B. DeCoste, R.Q. Snurr, J.T. Hupp, O.K. Farha, High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27, Dalton Trans., 45 (2016) 4150–4153.
  121. A.J. Rieth, Y. Tulchinsky, M. Dincă, High and reversible ammonia uptake in mesoporous azolate metal–organic frameworks with open Mn, Co, and Ni sites, J. Am. Chem. Soc., 138 (2016) 9401–9404.
  122. K.C. Kim, P.Z. Moghadam, D. Fairen-Jimenez, R.Q. Snurr, Computational screening of metal catecholates for ammonia capture in metal–organic frameworks, Ind. Eng. Chem. Res., 54 (2015) 3257–3267.
  123. J.N. Joshi, E.Y. Garcia-Gutierrez, C.M. Moran, J.I. Deneff, K.S. Walton, Engineering copper carboxylate functionalities on water stable metal–organic frameworks for enhancement of ammonia removal capacities, J. Phys. Chem. C, 121 (2017) 3310–3319.
  124. N.M. Padial, E. Quartapelle-Procopio, C. Montoro, E. López, J.E. Oltra, V. Colombo, A. Maspero, N. Masciocchi, S. Galli, I. Senkovska, S. Kaskel, E. Barea, J.A.R. Navarro, Highly hydrophobic isoreticular porous metal–organic frameworks for the capture of harmful volatile organic compounds, Angew. Chem. Int. Ed., 52 (2013) 8290–8294.
  125. Z. Zhao, S. Wang, Y. Yang, X. Li, J. Li, Z. Li, Competitive adsorption and selectivity of benzene and water vapor on the microporous metal–organic frameworks (HKUST-1), Chem. Eng. J., 259 (2015) 79–89.
  126. A. Planchais, S. Devautour-Vinot, S. Giret, F. Salles, P. Trens, A. Fateeva, T. Devic, P. Yot, C. Serre, N. Ramsahye, G. Maurin, Adsorption of benzene in the cation-containing MOFs MIL- 141, J. Phys. Chem. C, 117 (2013) 19393–19401.
  127. W.W. He, G.S. Yang, Y.J. Tang, S.L. Li, S.R. Zhang, Z.M. Su, Y.Q. Lan, Phenyl groups result in the highest benzene storage and most efficient desulfurization in a series of isostructural metal–organic frameworks, Chem. - A Eur. J., 21 (2015) 9784–9789.
  128. D. Ma, Y. Li, Z. Li, Tuning the moisture stability of metal–organic frameworks by incorporating hydrophobic functional groups at different positions of ligands, Chem. Commun., 47 (2011) 7377–7379.
  129. W. Huang, J. Jiang, D. Wu, J. Xu, B. Xue, A.M. Kirillov, A highly stable nanotubular MOF rotator for selective adsorption of benzene and separation of xylene isomers, Inorg. Chem., 54 (2015) 10524–10526.
  130. G.W. Peterson, J.J. Mahle, J.B. DeCoste, W.O. Gordon, J.A. Rossin, Extraordinary NO2 removal by the metal– organic framework UiO-66-NH2, Angew. Chem., 128 (2016) 6343–6346.
  131. A.M. Ebrahim, T.J. Bandosz, Effect of amine modification on the properties of zirconium–carboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions, Microporous Mesoporous Mater., 188 (2014) 149–162.
  132. C.O. Audu, H.G.T. Nguyen, C.Y. Chang, M.J. Katz, L. Mao, O.K. Farha, J.T. Hupp, S.T. Nguyen, The dual capture of AsV and AsIII by UiO-66 and analogues, Chem. Sci., 7 (2016) 6492–6498.
  133. J.B. DeCoste, T.J. Demasky, M.J. Katz, O.K. Farha, J.T. Hupp, A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals, New J. Chem., 39 (2015) 2396–2399.
  134. J.Y. Lee, T.C. Keener, Y.J. Yang, Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants, J. Air Waste Manage. Assoc., 59 (2009) 725–732.
  135. K. Tan, P. Canepa, Q. Gong, J. Liu, D.H. Johnson, A. Dyevoich, P.K. Thallapally, T. Thonhauser, J. Li, Y.J. Chabal, Mechanism of preferential adsorption of SO2 into two microporous paddle wheel frameworks M(bdc)(ted)0.5, Chem. Mater., 25 (2013) 4653–4662.
  136. M. Savage, Y. Cheng, T.L. Easun, J.E. Eyley, S.P. Argent, M.R. Warren, W. Lewis, C. Murray, C.C. Tang, M.D. Frogley, G. Cinque, J. Sun, S. Rudić, R.T. Murden, M.J. Benham, A.N. Fitch, A.J. Blake, A.J. Ramirez-Cuesta, S. Yang, M. Schröder, Selective adsorption of sulfur dioxide in a robust metal–organic framework material, Adv. Mater., 28 (2016) 8705–8711.
  137. X. Cui, Q. Yang, L. Yang, R. Krishna, Z. Zhang, Z. Bao, H. Wu, Q. Ren, W. Zhou, B. Chen, H. Xing, Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials, Adv. Mater., 29 (2017) 1606929, doi: 10.1002/adma.201606929.
  138. C.E. Uzoigwe, L.C.S. Franco, M.D. Forrest, Iatrogenic Greenhouse Gases: The Role of Anaesthetic Agents, British Journal Hospital Medicine, MA Healthcare London, 2016, pp. 19–23.
  139. Y. Ishizawa, General anesthetic gases and the global environment, Anesth. Analg., 112 (2011) 213–217.
  140. N. Gargiulo, A. Peluso, P. Aprea, M. Eić, D. Caputo, An insight into clustering of halogenated anesthetics molecules in metal–organic frameworks: evidence of adsorbate selfassociation in micropores, J. Colloid Interface Sci., 554 (2019) 463–467.
  141. N. Gargiulo, A. Peluso, P. Aprea, Y. Hua, D. Filipović, D. Caputo, M. Eić, A chromium-based metal–organic framework as a potential high performance adsorbent for anaesthetic vapours, RSC Adv., 4 (2014) 49478–49484.
  142. R.C. Ewing, F.N. von Hippel, Nuclear waste management in the United States—starting over, Science, 325 (2009) 151–152.
  143. K.W. Chapman, P.J. Chupas, T.M. Nenoff, Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation, J. Am. Chem. Soc., 132 (2010) 8897–8899.
  144. J.-P. Lang, Q.-F. Xu, R.-X. Yuan, B.F. Abrahams, [WS4Cu4(4,4’-bpy)]4[WS4Cu4I4(4,4’-bpy)]2]infinity--an unusual 3D porous coordination polymer formed from the preformed cluster [Et4N]4[WS4Cu4I6], Angew. Chem. Int. Ed., 43 (2004) 4741–4745.
  145. Z.-M. Wang, Y.-J. Zhang, T. Liu, M. Kurmoo, S. Gao, [Fe3(HCOO)6]: a permanent porous diamond framework displaying H2/N2 adsorption, guest inclusion, and guestdependent magnetism, Adv. Funct. Mater., 17 (2007) 1523–1536.
  146. M.-H. Zeng, Q.-X. Wang, Y.-X. Tan, S. Hu, H.-X. Zhao, L.-S. Long, M. Kurmoo, Rigid pillars and double walls in a porous metal–organic framework: single-crystal to singlecrystal, controlled uptake and release of iodine and electrical conductivity, J. Am. Chem. Soc., 132 (2010) 2561–2563.
  147. D.F. Sava, M.A. Rodriguez, K.W. Chapman, P.J. Chupas, J.A. Greathouse, P.S. Crozier, T.M. Nenoff, Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8, J. Am. Chem. Soc., 133 (2011) 12398–12401.
  148. D. Haefner, T. Tranter, Methods of Gas Phase Capture of Iodine From Fuel Reprocessing Off-Gas: A Literature Survey, Idaho National Laboratory, Idaho Falls, Idaho 83415, 2007, pp. 1–25.
  149. T.D. Bennett, P.J. Saines, D.A. Keen, J.-C. Tan, A.K. Cheetham, Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine, Chem. - A Eur. J., 19 (2013) 7049–7055.
  150. F.G. Kerry, Industrial Gas Handbook: Gas Separation and Purification, CRC Press, Boca Raton, 2007.
  151. M.A. Torcivia, S.M.E. Demers, K.L. Broadwater, D.B. Hunter, Investigating the effects of Ag, Cu, and Pd functionalized chabazite on the adsorption affinities of noble gases Xe, Kr, and Ar, J. Phys. Chem. C, 127 (2023) 3800–3807.
  152. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle- Arndt, J. Pastré, Metal–organic frameworks—prospective industrial applications, J. Mater. Chem., 16 (2006) 626–636.
  153. P.K. Thallapally, J.W. Grate, R.K. Motkuri, Facile xenon capture and release at room temperature using a metal– organic framework: a comparison with activated charcoal, Chem. Commun., 48 (2012) 347–349.
  154. J. Liu, P.K. Thallapally, D. Strachan, Metal–organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants, Langmuir, 28 (2012) 11584–11589.
  155. D. Britt, D. Tranchemontagne, O.M. Yaghi, metal–organic frameworks with high capacity and selectivity for harmful gases, Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 11623–11627.
  156. C.-Y. Huang, M. Song, Z.-Y. Gu, H.-F. Wang, X.-P. Yan, Probing the adsorption characteristic of metal–organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance, Environ. Sci. Technol., 45 (2011) 4490–4496.
  157. K. Yang, Q. Sun, F. Xue, D. Lin, Adsorption of volatile organic compounds by metal–organic frameworks MIL-101: influence of molecular size and shape, J. Hazard. Mater., 195 (2011) 124–131.
  158. Z. Zhao, X. Li, S. Huang, Q. Xia, Z. Li, Adsorption and diffusion of benzene on chromium-based metal–organic framework MIL-101 synthesized by microwave irradiation, Ind. Eng. Chem. Res., 50 (2011) 2254–2261.
  159. E. Quartapelle Procopio, F. Linares, C. Montoro, V. Colombo, A. Maspero, E. Barea, J.A.R. Navarro, Cation-exchange porosity tuning in anionic metal–organic frameworks for the selective separation of gases and vapors and for catalysis, Angew. Chem., 122 (2010) 7466–7469.
  160. V. Finsy, C.E.A. Kirschhock, G. Vedts, M. Maes, L. Alaerts, D.E. De Vos, G.V. Baron, J.F.M. Denayer, Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal–organic framework MIL-53, Chem. - A Eur. J., 15 (2009) 7724–7731.
  161. H. Wu, Q. Gong, D.H. Olson, J. Li, Commensurate adsorption of hydrocarbons and alcohols in microporous metal–organic frameworks, Chem. Rev., 112 (2012) 836–868.
  162. N.A. Khan, S.H. Jhung, Remarkable adsorption capacity of CuCl2-loaded porous vanadium benzenedicarboxylate for benzothiophene, Angew. Chem. Int. Ed., 51 (2012) 1198–1201.
  163. Y. Takashima, V.M. Martínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Molecular decoding using luminescence from an entangled porous framework, Nat. Commun., 2 (2011) 168, doi: 10.1038/ncomms1170.
  164. M. Ohba, K. Yoneda, G. Agustí, M.C. Muñoz, A.B. Gaspar, J.A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, Bidirectional chemo-switching of spin state in a microporous framework, Angew. Chem. Int. Ed., 48 (2009) 4767–4771.
  165. S. Galli, N. Masciocchi, V. Colombo, A. Maspero, G. Palmisano, F.J. López-Garzón, M. Domingo-García, I. Fernández-Morales, E. Barea, J.A.R. Navarro, Adsorption of harmful organic vapors by flexible hydrophobic bis-pyrazolate based MOFs, Chem. Mater., 22 (2010) 1664–1672.
  166. C. Montoro, F. Linares, E. Quartapelle Procopio, I. Senkovska, S. Kaskel, S. Galli, N. Masciocchi, E. Barea, J.A.R. Navarro, Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metal–organic frameworks, J. Am. Chem. Soc., 133 (2011) 11888–11891.
  167. C. Yang, U. Kaipa, Q.Z. Mather, X. Wang, V. Nesterov, A.F. Venero, M.A. Omary, Fluorous metal–organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage, J. Am. Chem. Soc., 133 (2011) 18094–18097.
  168. A. Pell, A. Márquez, J.F. López-Sánchez, R. Rubio, M. Barbero, S. Stegen, F. Queirolo, P. Díaz-Palma, Occurrence of arsenic species in algae and freshwater plants of an extreme arid region in northern Chile, the Loa River Basin, Chemosphere, 90 (2013) 556–564.
  169. R.E. Vernon, Which elements are metalloids?, J. Chem. Educ., 90 (2013) 1703–1707.
  170. B.-J. Zhu, X.-Y. Yu, Y. Jia, F.-M. Peng, B. Sun, M.-Y. Zhang, T. Luo, J.-H. Liu, X.-J. Huang, Iron and 1,3,5-benzenetricarboxylic metal–organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions, J. Phys. Chem. C, 116 (2012) 8601–8607.
  171. Z.-Q. Li, J.-C. Yang, K.-W. Sui, N. Yin, Facile synthesis of metal–organic framework MOF-808 for arsenic removal, Mater. Lett., 160 (2015) 412–414.
  172. C. Prum, R. Dolphen, P. Thiravetyan, Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifolius−endophytic Arthrobacter creatinolyticus interactions, J. Environ. Manage., 213 (2018) 11–19.
  173. T.A. Vu, G.H. Le, C.D. Dao, L.Q. Dang, K.T. Nguyen, Q.K. Nguyen, P.T. Dang, H.T.K. Tran, Q.T. Duong, T.V. Nguyen, G.D. Lee, Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent, RSC Adv., 5 (2015) 5261–5268.
  174. M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters: I. Occurrence, Earth-Sci. Rev., 57 (2002) 125–176.
  175. T.E. McKone, J.I. Daniels, Estimating human exposure through multiple pathways from air, water, and soil, Regul. Toxicol. Pharm., 13 (1991) 36–61.
  176. J.E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E.J. DeMarco, M.H. Weston, A.A. Sarjeant, S.T. Nguyen, P.C. Stair, R.Q. Snurr, O.K. Farha, J.T. Hupp, Vapor-phase metalation by atomic layer deposition in a metal–organic framework, J. Am. Chem. Soc., 135 (2013) 10294–10297.
  177. A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nat. Rev. Mater., 1 (2016) 15018, doi: 10.1038/natrevmats.2015.18.
  178. A.J. Howarth, M.J. Katz, T.C. Wang, A.E. Platero-Prats, K.W. Chapman, J.T. Hupp, O.K. Farha, High efficiency adsorption and removal of selenate and selenite from water using metal–organic frameworks, J. Am. Chem. Soc., 137 (2015) 7488–7494.
  179. S. Rangwani, A.J. Howarth, M.R. DeStefano, C.D. Malliakas, A.E. Platero-Prats, K.W. Chapman, O.K. Farha, Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal–organic framework, Polyhedron, 151 (2018) 338–343.
  180. J. Li, X. Li, T. Hayat, A. Alsaedi, C. Chen, Screening of zirconium-based metal–organic frameworks for efficient simultaneous removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution, ACS Sustainable Chem. Eng., 5 (2017) 11496–11503.
  181. M. Kim, S.M. Cohen, Discovery, development, and functionalization of Zr(IV)-based metal–organic frameworks, CrystEngComm, 14 (2012) 4096–4104.
  182. X. He, X. Min, X. Luo, Efficient removal of antimony (III, V) from contaminated water by amino modification of a zirconium metal–organic framework with mechanism study, J. Chem. Eng. Data, 62 (2017) 1519–1529.
  183. F. Ke, L.-G. Qiu, Y.-P. Yuan, F.-M. Peng, X. Jiang, A.-J. Xie, Y.-H. Shen, J.-F. Zhu, Thiol-functionalization of metal–organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water, J. Hazard. Mater., 196 (2011) 36–43.
  184. L. Huang, M. He, B. Chen, B. Hu, A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg2+ from water, J. Mater. Chem. A, 3 (2015) 11587–11595.
  185. H. Saleem, U. Rafique, R.P. Davies, Investigations on postsynthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution, Microporous Mesoporous Mater., 221 (2016) 238–244.
  186. K.-K. Yee, N. Reimer, J. Liu, S.-Y. Cheng, S.-M. Yiu, J. Weber, N. Stock, Z. Xu, Effective mercury sorption by thiol-laced metal–organic frameworks: in strong acid and the vapor phase, J. Am. Chem. Soc., 135 (2013) 7795–7798.
  187. S. Halder, J. Mondal, J. Ortega-Castro, A. Frontera, P. Roy, A Ni-based MOF for selective detection and removal of Hg2+ in aqueous medium: a facile strategy, Dalton Trans., 46 (2017) 1943–1950.
  188. Y. Manawi, G. McKay, N. Ismail, A. Kayvani Fard, V. Kochkodan, M.A. Atieh, Enhancing lead removal from water by complex-assisted filtration with acacia gum, Chem. Eng. J., 352 (2018) 828–836.
  189. R. Ricco, K. Konstas, M.J. Styles, J.J. Richardson, R. Babarao, K. Suzuki, P. Scopece, P. Falcaro, Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in water, J. Mater. Chem. A, 3 (2015) 19822–19831.
  190. J. Zhang, Z. Xiong, C. Li, C. Wu, Exploring a thiolfunctionalized MOF for elimination of lead and cadmium from aqueous solution, J. Mol. Liq., 221 (2016) 43–50.
  191. J.M. Rivera, S. Rincón, C. Ben Youssef, A. Zepeda, Highly efficient adsorption of aqueous Pb(II) with mesoporous metal–organic framework-5: an equilibrium and kinetic study, J. Nanomater., 2016 (2016) 8095737, doi: 10.1155/2016/8095737.
  192. E. Tahmasebi, M.Y. Masoomi, Y. Yamini, A. Morsali, Application of mechanosynthesized azine-decorated zinc(II) metal–organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study, Inorg. Chem., 54 (2015) 425–433.
  193. F. Zou, R. Yu, R. Li, W. Li, Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@H3PW12O40: selective adsorption of heavy metal ions in water analyzed with synchrotron radiation, ChemPhysChem, 14 (2013) 2825–2832.
  194. E. Rahimi, N. Mohaghegh, Removal of toxic metal ions from sungun acid rock drainage using mordenite zeolite, graphene nanosheets, and a novel metal–organic framework, Mine Water Environ., 35 (2016) 18–28.
  195. Q. Yang, Q. Zhao, S. Ren, Q. Lu, X. Guo, Z. Chen, Fabrication of core-shell Fe3O4@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution, J. Solid State Chem., 244 (2016) 25–30.
  196. L. Aboutorabi, A. Morsali, E. Tahmasebi, O. Büyükgüngor, Metal–organic framework based on isonicotinate
    N-oxide for fast and highly efficient aqueous phase Cr(VI) adsorption, Inorg. Chem., 55 (2016) 5507–5513.
  197. K. Wang, X. Tao, J. Xu, N. Yin, Novel chitosan–MOF composite adsorbent for the removal of heavy metal ions, Chem. Lett., 45 (2016) 1365–1368.
  198. S. Rapti, A. Pournara, D. Sarma, I.T. Papadas, G.S. Armatas, Y.S. Hassan, M.H. Alkordi, M.G. Kanatzidis, M.J. Manos, Rapid, green and inexpensive synthesis of high quality UiO-66 amino-functionalized materials with exceptional capability for removal of hexavalent chromium from industrial waste, Inorg. Chem. Front., 3 (2016) 635–644.
  199. A. Ma, F. Ke, J. Jiang, Q. Yuan, Z. Luo, J. Liu, A. Kumar, Two lanthanide-based metal–organic frameworks for highly efficient adsorption and removal of fluoride ions from water, CrystEngComm, 19 (2017) 2172–2177.
  200. M. Vithanage, P. Bhattacharya, Fluoride in the environment: sources, distribution and defluoridation, Environ. Chem. Lett., 13 (2015) 131–147.
  201. N. Zhang, X. Yang, X. Yu, Y. Jia, J. Wang, L. Kong, Z. Jin, B. Sun, T. Luo, J. Liu, Al-1,3,5-benzenetricarboxylic metal–organic frameworks: a promising adsorbent for defluoridation of water with pH insensitivity and low aluminum residual, Chem. Eng. J., 252 (2014) 220–229.
  202. K.-Y.A. Lin, Y.-T. Liu, S.-Y. Chen, Adsorption of fluoride to UiO-66-NH2 in water: stability, kinetic, isotherm and thermodynamic studies, J. Colloid Interface Sci., 461 (2016) 79–87.
  203. F. Ke, C. Peng, T. Zhang, M. Zhang, C. Zhou, H. Cai, J. Zhu, X. Wan, Fumarate-based metal–organic frameworks as a new platform for highly selective removal of fluoride from brick tea, Sci. Rep., 8 (2018) 939, doi: 10.1038/s41598-018-19277-2.
  204. X.-H. Zhu, C.-X. Yang, X.-P. Yan, Metal–organic framework-801 for efficient removal of fluoride from water, Microporous Mesoporous Mater., 259 (2018) 163–170.
  205. X. Zhang, F. Sun, J. He, H. Xu, F. Cui, W. Wang, Robust phosphate capture over inorganic adsorbents derived from lanthanum metal–organic frameworks, Chem. Eng. J., 326 (2017) 1086–1094.
  206. S. Mazloomi, M. Yousefi, H. Nourmoradi, M. Shams, Evaluation of phosphate removal from aqueous solution using metal–organic framework; isotherm, kinetic and thermodynamic study, J. Environ. Health Sci. Eng., 17 (2019) 209–218.
  207. H. Qiu, L. Yang, F. Liu, Y. Zhao, L. Liu, J. Zhu, M. Song, Highly selective capture of phosphate ions from water by a water stable metal–organic framework modified with polyethyleneimine, Environ. Sci. Pollut. Res., 24 (2017) 23694–23703.
  208. T. Liu, J. Feng, Y. Wan, S. Zheng, L. Yang, ZrO2 nanoparticles confined in metal–organic frameworks for highly effective adsorption of phosphate, Chemosphere, 210 (2018) 907–916.
  209. K.-Y.A. Lin, S.-Y. Chen, A.P. Jochems, Zirconium-based metal– organic frameworks: highly selective adsorbents for removal of phosphate from water and urine, Mater. Chem. Phys., 160 (2015) 168–176.
  210. Y. Feng, H. Jiang, S. Li, J. Wang, X. Jing, Y. Wang, M. Chen, Metal–organic frameworks HKUST-1 for liquid-phase adsorption of uranium, Colloids Surf., A, 431 (2013) 87–92.
  211. D. Sheng, L. Zhu, C. Xu, C. Xiao, Y. Wang, Y. Wang, L. Chen, J. Diwu, J. Chen, Z. Chai, T.E. Albrecht-Schmitt, S. Wang, Efficient and selective uptake of TcO4 – by a cationic metal– organic framework material with open Ag+ sites, Environ. Sci. Technol., 51 (2017) 3471–3479.
  212. N. Zhang, L.-Y. Yuan, W.-L. Guo, S.-Z. Luo, Z.-F. Chai, W.-Q. Shi, Extending the use of highly porous and functionalized MOFs to Th(IV) capture, ACS Appl. Mater. Interfaces, 9 (2017) 25216–25224.
  213. R. Das, C.M. Nagaraja, Noble metal-free Cu(I)-anchored NHC-based MOF for highly recyclable fixation of CO2 under RT and atmospheric pressure conditions, Green Chem., 23 (2021) 5195–5204.
  214. M. Wen, G. Li, H. Liu, J. Chen, T. An, H. Yamashita, Metal–organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges, Environ. Sci. Nano, 6 (2019) 1006–1025.
  215. M. Ding, X. Cai, H.-L. Jiang, Improving MOF stability: approaches and applications, Chem. Sci., 10 (2019) 10209–10230.
  216. P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Porous metal– organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, J. Am. Chem. Soc., 130 (2008) 6774–6780.
  217. H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, Rational design of metal–organic frameworks for electroreduction of CO2 to hydrocarbons and carbon oxygenates, ACS Cent. Sci., 8 (2022) 1506–1517.
  218. C. Li, Z. Zhuang, F. Huang, Z. Wu, Y. Hong, Z. Lin, Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg(OH)2, ACS Appl. Mater. Interfaces, 5 (2013) 9719–9725.
  219. H. Furukawa, F. Gándara, Y.B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal– organic frameworks and related materials, J. Am. Chem. Soc., 136 (2014) 4369–4381.
  220. S.S. Chui, S.M. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material, Science, 283 (1999) 1148–1150.
  221. H. Xu, J. Gao, X. Qian, J. Wang, H. He, Y. Cui, Y. Yang, Z. Wang, G. Qian, Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+, J. Mater. Chem. A, 4 (2016) 10900–10905.
  222. S. Kumar, S. Jain, M. Nehra, N. Dilbaghi, G. Marrazza, K.-H. Kim, Green synthesis of metal–organic frameworks: a state-of-the-art review of potential environmental and medical applications, Coord. Chem. Rev., 420 (2020) 213407, doi: 10.1016/j.ccr.2020.213407.