References
- M. Puri, K. Gandhi, M.S. Kumar, Emerging environmental
contaminants: a global perspective on policies and regulations,
J. Environ. Manage., 332 (2023) 117344, doi: 10.1016/j.jenvman.2023.117344.
- U. Pöschl, M. Shiraiwa, Multiphase chemistry at the
atmosphere–biosphere interface influencing climate and public
health in the anthropocene, Chem. Rev., 115 (2015) 4440–4475.
- M. Kampa, E. Castanas, Human health effects of air pollution,
Environ. Pollut., 151 (2008) 362–367.
- Z. Zhang, J. Chen, Y. Gao, Z. Ao, G. Li, T. An, Y. Hu, Y. Li,
A coupled technique to eliminate overall nonpolar and polar
volatile organic compounds from paint production industry,
J. Cleaner Prod., 185 (2018) 266–274.
- J. Tang, T. An, J. Xiong, G. Li, The evolution of pollution profile
and health risk assessment for three groups SVOCs pollutants
along with Beijiang River, China, Environ. Geochem. Health,
39 (2017) 1487–1499.
- H.K. Okoro, J.O. Ige, O.A. Iyiola, J.C. Ngila, Fractionation
profile, mobility patterns and correlations of heavy metals
in estuary sediments from Olonkoro river, in tede catchment
of western region, Nigeria, Environ. Nanotechnol. Monit.
Manage., 8 (2017) 53–62.
- A. Daripa, L.C. Malav, D.K. Yadav, S. Chattaraj, Chapter 7
- Metal Contamination in Water Resources Due to Various
Anthropogenic Activities, S.K. Shukla, S. Kumar, S. Madhav,
P.K. Mishra, Eds., Metals in Water: Global Sources, Significance,
and Treatment Advances in Environmental Pollution Research,
Elsevier, Amsterdam, 2023, pp. 111–127.
- J.L. Adgate, B.D. Goldstein, L.M. McKenzie, Potential
public health hazards, exposures and health effects from
unconventional natural gas development, Environ. Sci.
Technol., 48 (2014) 8307–8320.
- L.F. Liotta, Catalytic oxidation of volatile organic compounds
on supported noble metals, Appl. Catal., B, 100 (2010) 403–412.
- G.-L. Wei, X.-L. Liang, D.-Q. Li, M.-N. Zhuo, S.-Y. Zhang,
Q.-X. Huang, Y.-S. Liao, Z.-Y. Xie, T.-L. Guo, Z.-J. Yuan,
Occurrence, fate and ecological risk of chlorinated paraffins in
Asia: a review, Environ. Int., 92–93 (2016) 373–387.
- M.A. Bari, W.B. Kindzierski, Ambient volatile organic
compounds (VOCs) in communities of the Athabasca oil
sands region: sources and screening health risk assessment,
Environ. Pollut., 235 (2018) 602–614.
- S. Mentese, D. Tasdibi, Assessment of residential exposure to
volatile organic compounds (VOCs) and carbon dioxide (CO2),
Global Nest J., 19 (2017) 726–732.
- Z. Guo, R. Ma, G. Li, Degradation of phenol by nanomaterial
TiO2 in wastewater, Chem. Eng. J., 119 (2006) 55–59.
- J. Chen, Z. He, G. Li, T. An, H. Shi, Y. Li, Visible-light-enhanced
photothermocatalytic activity of ABO3-type perovskites for
the decontamination of gaseous styrene, Appl. Catal., B,
209 (2017) 146–154.
- M. Yao, Y. Ji, H. Wang, Z. Ao, G. Li, T. An, Adsorption
mechanisms of typical carbonyl-containing volatile organic
compounds on anatase TiO2 (001) surface: a DFT investigation,
J. Phys. Chem. C, 121 (2017) 13717–13722.
- C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of
organic pollutants for the wastewater treatment: direct and
indirect processes, Chem. Soc. Rev., 35 (2006) 1324–1340.
- B. Ramesh, A. Saravanan, P. Senthil Kumar, P.R. Yaashikaa,
P. Thamarai, A. Shaji, G. Rangasamy, A review on algae
biosorption for the removal of hazardous pollutants from
wastewater: limiting factors, prospects and recommendations,
Environ. Pollut., 327 (2023) 121572, doi: 10.1016/j.envpol.2023.121572.
- H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide
photocatalysis in atmospheric chemistry, Chem. Rev., 112 (2012)
5919–5948.
- S. Wu, X. Nie, Z. Wang, Z. Yu, F. Huang, Magnetron sputtering
engineering of typha-like carbon nanofiber interlayer
integrating brush filter and chemical adsorption for Li–S
batteries, Carbon N. Y., 201 (2023) 285–294.
- E. Barea, C. Montoro, J.A.R. Navarro, Toxic gas removal-metal–organic frameworks for the capture and degradation of toxic
gases and vapours, Chem. Soc. Rev., 43 (2014) 5419–5430.
- N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of
hazardous materials using metal–organic frameworks (MOFs):
a review, J. Hazard. Mater., 244–245 (2013) 444–456.
- R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi,
S. Horike, M. Takata, Guest Shape-responsive fitting of porous
coordination polymer with shrinkable framework, J. Am.
Chem. Soc., 126 (2004) 14063–14070.
- W. Huang, Y. Zhang, D. Li, Adsorptive removal of phosphate
from water using mesoporous materials: a review, J. Environ.
Manage., 193 (2017) 470–482.
- X.D. Zhang, Y. Wang, Y.Q. Yang, D. Chen, Recent progress in
the removal of volatile organic compounds by mesoporous
silica materials and supported catalysts, Wuli Huaxue Xuebao/Acta Phys. Chim. Sin., 31 (2015) 1633–1646.
- Z. Guo, J. Huang, Z. Xue, X. Wang, Electrospun graphene oxide/carbon composite nanofibers with well-developed mesoporous
structure and their adsorption performance for benzene and
butanone, Chem. Eng. J., 306 (2016) 99–106.
- S.M. Manocha, Porous carbons, Sadhana - Acad. Proc. Eng. Sci.,
28 (2003) 335–348.
- D. Thatikayala, M.T. Noori, B. Min, Zeolite-modified electrodes
for electrochemical sensing of heavy metal ions – progress
and future directions, Mater. Today Chem., 29 (2023) 101412,
doi: 10.1016/j.mtchem.2023.101412.
- G. Férey, Hybrid porous solids: past, present, future, Chem.
Soc. Rev., 37 (2008) 191–214.
- M. Wen, Y. Kuwahara, K. Mori, D. Zhang, H. Li, H. Yamashita,
Synthesis of Ce ions doped metal–organic framework for
promoting catalytic H2 production from ammonia borane
under visible light irradiation, J. Mater. Chem. A, 3 (2015)
14134–14141.
- M. Wen, Y. Cui, Y. Kuwahara, K. Mori, H. Yamashita, Non-noblemetal
nanoparticle supported on metal–organic framework as
an efficient and durable catalyst for promoting H2 production
from ammonia borane under visible light irradiation, ACS
Appl. Mater. Interfaces, 8 (2016) 21278–21284.
- J.-L. Wang, C. Wang, W. Lin, Metal–organic frameworks for
light harvesting and photocatalysis, ACS Catal., 2 (2012)
2630–2640.
- J. Seo, R. Matsuda, H. Sakamoto, C. Bonneau, S. Kitagawa,
A pillared-layer coordination polymer with a rotatable pillar
acting as a molecular gate for guest molecules, J. Am. Chem.
Soc., 131 (2009) 12792–12800.
- T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry,
T. Bataille, G. Férey, A rationale for the large breathing of the
porous aluminum terephthalate (MIL-53) upon hydration,
Chem. - A Eur. J., 10 (2004) 1373–1382.
- A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel,
R.A. Fischer, Flexible metal–organic frameworks, Chem. Soc.
Rev., 43 (2014) 6062–6096.
- Z.J. Lin, J. Lü, M. Hong, R. Cao, Metal–organic frameworks based
on flexible ligands (FL-MOFs): structures and applications,
Chem. Soc. Rev., 43 (2014) 5867–5895.
- O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer,
A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın,
J.T. Hupp, Metal–organic framework materials with ultrahigh
surface areas: is the sky the limit?, J. Am. Chem. Soc., 134 (2012)
15016–15021.
- A. Demessence, D.M. D’Alessandro, M.L. Foo, J.R. Long, Strong
CO2 binding in a water-stable, triazolate-bridged metal−organic
framework functionalized with ethylenediamine, J. Am.
Chem. Soc., 131 (2009) 8784–8786.
- X.-Y. Lin, Y.-H. Li, M.-Y. Qi, Z.-R. Tang, H.-L. Jiang,
Y.-J. Xu, A unique coordination-driven route for the precise
nanoassembly of metal sulfides on metal–organic frameworks,
Nanoscale Horiz., 5 (2020) 714–719.
- X.-Y. Lin, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Photochemical
dehydrogenation of N-heterocycles over MOF-supported
CdS nanoparticles with nickel modification, Appl. Catal., B,
317 (2022) 121708, doi: 10.1016/j.apcatb.2022.121708.
- A.S. Malik, D. Letson, S.R. Crutchfield, Point/nonpoint source
trading of pollution abatement: choosing the right trading ratio,
Am. J. Agric. Econ., 75 (1993) 959–967.
- Y. Yang, B. Yan, W. Shen, Assessment of point and nonpoint
sources pollution in Songhua River Basin, Northeast China by
using revised water quality model, Chin. Geogr. Sci., 20 (2010)
30–36.
- S.R. Carpenter, N.F. Caraco, D.L. Correll, R.W. Howarth,
A.N. Sharpley, V.H. Smith, Nonpoint pollution of surface waters
with phosphorus and nitrogen, Ecol. Appl., 8 (1998) 559–568.
- N. Štambuk-Giljanović, The Pollution load by nitrogen and
phosphorus IN the Jadro River, Environ. Monit. Assess.,
123 (2006) 13–30.
- V. Kertész, G. Bakonyi, B. Farkas, Water pollution by Cu and
Pb can adversely affect mallard embryonic development,
Ecotoxicol. Environ. Saf., 65 (2006) 67–73.
- W. Ouyang, H. Huang, F. Hao, Y. Shan, B. Guo, Evaluating
spatial interaction of soil property with non‐point source
pollution at watershed scale: the phosphorus indicator in
Northeast China, Sci. Total Environ., 432 (2012) 412–421.
- J. Cheng, T. Yuan, W. Wang, J. Jia, X. Lin, L. Qu, Z. Ding, Mercury
pollution in two typical areas in Guizhou Province, China and
its neurotoxic effects in the brains of rats fed with local polluted
rice, Environ. Geochem. Health, 28 (2006) 499–507.
- R. Lohmann, K. Breivik, J. Dachs, D. Muir, Global fate of
POPs: current and future research directions, Environ. Pollut.,
150 (2007) 150–165.
- K. Breivik, R. Alcock, Y.-F. Li, R.E. Bailey, H. Fiedler, J.M. Pacyna,
Primary sources of selected POPs: regional and global scale
emission inventories, Environ. Pollut., 128 (2004) 3–16.
- C.A. Basar, A. Karagunduz, A. Cakici, B. Keskinler, Removal of
surfactants by powdered activated carbon and microfiltration,
Water Res., 38 (2004) 2117–2124.
- K. Hunger, Industrial Dyes: Chemistry, Properties, Wiley,
London, 2003.
- J. Michałowicz, W. Duda, Phenols - sources and toxicity,
Pol. J. Environ. Stud., 16 (2007) 347–362.
- L. Theodore, Heat Transfer Applications for the Practicing
Engineer, John Wiley & Sons, Ltd., Hoboken, NJ, USA, 2011.
- Y.-S. Ho, W.-T. Chiu, C.-C. Wang, Regression analysis for
the sorption isotherms of basic dyes on sugarcane dust,
Bioresour. Technol., 96 (2005) 1285–1291.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–471.
- G. Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater
Engineering: Treatment and Reuse, 4th ed., McGraw-Hill,
Boston, 2003.
- C.A. Toles, W.E. Marshall, M.M. Johns, L.H. Wartelle,
A. McAloon, Acid-activated carbons from almond shells:
physical, chemical and adsorptive properties and estimated
cost of production, Bioresour. Technol., 71 (2000) 87–92.
- C.A. Toles, W.E. Marshall, M.M. Johns, Phosphoric acid
activation of nutshells for metals and organic remediation:
process optimization, J. Chem. Technol. Biotechnol., 72 (1998)
255–263.
- M.M. Johns, W.E. Marshall, C.A. Toles, Agricultural by-products
as granular activated carbons for adsorbing dissolved metals
and organics, J. Chem. Technol. Biotechnol., 71 (1998) 131–140.
- S.A. Dastgheib, D.A. Rockstraw, Pecan shell activated carbon:
synthesis, characterization, and application for the removal
of copper from aqueous solution, Carbon N. Y., 39 (2001)
1849–1855.
- L.H. Wartelle, W.E. Marshall, Nutshells as granular activated
carbons: physical, chemical and adsorptive properties, J. Chem.
Technol. Biotechnol., 76 (2001) 451–455.
- T.S. Anirudhan, S.S. Sreekumari, Adsorptive removal of heavy
metal ions from industrial effluents using activated carbon
derived from waste coconut buttons, J. Environ. Sci., 23 (2011)
1989–1998.
- M. Ullah, R. Nazir, M. Khan, W. Khan, M. Shah, S.G. Afridi,
A. Zada, The effective removal of heavy metals from
water by activated carbon adsorbents of Albizia lebbeck and
Melia azedarach seed shells, Soil Water Res., 15 (2020) 30–37.
- S. Iijima, Helical microtubules of graphitic carbon, Nature,
354 (1991) 56–58.
- D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy,
J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon
nanotubes with single-atomic-layer walls, Nature, 363 (1993)
605–607.
- S.-H. Hsieh, J.-J. Horng, Adsorption behavior of heavy metal
ions by carbon nanotubes grown on microsized Al2O3 particles,
J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 14 (2007)
77–84.
- A. Stafiej, K. Pyrzynska, Solid phase extraction of metal ions
using carbon nanotubes, Microchem. J., 89 (2008) 29–33.
- G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from
aqueous solution by carbon nanotubes: a review, Sep. Purif.
Technol., 58 (2007) 224–231.
- R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for
dioxin removal, J. Am. Chem. Soc., 123 (2001) 2058–2059.
- X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia, Adsorption
of 1,2-dichlorobenzene from water to carbon nanotubes,
Chem. Phys. Lett., 376 (2003) 154–158.
- C. Lu, C. Liu, G.P. Rao, Comparisons of sorbent cost for the
removal of Ni2+ from aqueous solution by carbon nanotubes
and granular activated carbon, J. Hazard. Mater., 151 (2008)
239–246.
- F. Fornasiero, H.G. Park, J.K. Holt, M. Stadermann,
C.P. Grigoropoulos, A. Noy, O. Bakajin, Ion exclusion
by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. Sci. U.S.A.,
105 (2008) 17250–17255.
- N. Savage, M.S. Diallo, Nanomaterials and water purification:
opportunities and challenges, J. Nanopart. Res., 7 (2005)
331–342.
- K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert,
M.G. Schwab, K. Kim, A roadmap for graphene, Nature,
490 (2012) 192–200.
- W. Gao, M. Majumder, L.B. Alemany, T.N. Narayanan,
M.A. Ibarra, B.K. Pradhan, P.M. Ajayan, Engineered graphite
oxide materials for application in water purification,
ACS Appl. Mater. Interfaces, 3 (2011) 1821–1826.
- P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and
applications, Mater. Today, 15 (2012) 86–97.
- L. Xu, J. Wang, The application of graphene-based materials
for the removal of heavy metals and radionuclides from
water and wastewater, Crit. Rev. Env. Sci. Technol., 47 (2017)
1042–1105.
- Q. Qin, Q. Wang, D. Fu, J. Ma, An efficient approach for Pb(II)
and Cd(II) removal using manganese dioxide formed in
situ, Chem. Eng. J., 172 (2011) 68–74.
- G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered
graphene oxide nanosheets as superior sorbents for heavy
metal ion pollution management, Environ. Sci. Technol.,
45 (2011) 10454–10462.
- F. Arshad, M. Selvaraj, J. Zain, F. Banat, M.A. Haija,
Polyethylenimine modified graphene oxide hydrogel
composite as an efficient adsorbent for heavy metal ions,
Sep. Purif. Technol., 209 (2019) 870–880.
- D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sánchez, Graphenebased
microbots for toxic heavy metal removal and recovery
from water, Nano Lett., 16 (2016) 2860–2866.
- M. Inada, Y. Eguchi, N. Enomoto, J. Hojo, Synthesis of zeolite
from coal fly ashes with different silica–alumina composition,
Fuel, 84 (2005) 299–304.
- X. Querol, N. Moreno, J.C. Umaa, R. Juan, S. Hernndez,
C. Fernandez-Pereira, C. Ayora, M. Janssen, J. Garca-Martnez,
A. Linares-Solano, D. Cazorla-Amoros, Application of zeolitic
material synthesised from fly ash to the decontamination
of waste water and flue gas, J. Chem. Technol. Biotechnol.,
77 (2002) 292–298.
- L. Bandura, M. Franus, G. Józefaciuk, W. Franus, Synthetic
zeolites from fly ash as effective mineral sorbents for landbased
petroleum spills cleanup, Fuel, 147 (2015) 100–107.
- B. Szala, T. Bajda, J. Matusik, K. Zięba, B. Kijak, BTX sorption
on Na-P1 organo-zeolite as a process controlled by the
amount of adsorbed HDTMA, Microporous Mesoporous
Mater., 202 (2015) 115–123.
- I.G. Stefanova, Natural Sorbents as Barriers Against Migration
of Radionuclides from Radioactive Waste Repositories BT,
P. Misaelides, F. Macášek, T.J. Pinnavaia, C. Colella, Eds.,
Natural Microporous Materials in Environmental Technology,
Springer, Netherlands, Dordrecht, 1999, pp. 371–379.
- L. Sörme, A. Lindqvist, H. Söderberg, Capacity to influence
sources of heavy metals to wastewater treatment sludge,
Environ. Manage., 31 (2003) 421–428.
- T. Lee, L. Deog-Bae, L. Kyeong-Bo, H. Sang-Bok, H. Sang-Soo, Sorption of heavy metals from the wastewater by the
artificial zeolite, Korean J. Soil Sci. Fert., 31 (1998) 61–66.
- C. Haidouti, Inactivation of mercury in contaminated soils
using natural zeolites, Sci. Total Environ., 208 (1997) 105–109.
- J. Morency, Zeolite sorbent that effectively removes mercury
from flue gases, Filtr. Sep., 39 (2002) 24–26.
- M. Wdowin, M.M. Wiatros-Motyka, R. Panek, L.A. Stevens,
W. Franus, C.E. Snape, Experimental study of mercury
removal from exhaust gases, Fuel, 128 (2014) 451–457.
- M.W. Ackley, S.U. Rege, H. Saxena, Application of natural
zeolites in the purification and separation of gases,
Microporous Mesoporous Mater., 61 (2003) 25–42.
- G. Zhao, X. Huang, Z. Tang, Q. Huang, F. Niu, X. Wang, Polymerbased
nanocomposites for heavy metal ions removal from
aqueous solution: a review, Polym. Chem., 9 (2018) 3562–3582.
- F. Lu, D. Astruc, Nanomaterials for removal of toxic elements
from water, Coord. Chem. Rev., 356 (2018) 147–164.
- Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan,
Nanomaterials-enabled water and wastewater treatment,
NanoImpact, 3–4 (2016) 22–39.
- G.N. Manju, K. Anoop Krishnan, V.P. Vinod, T.S. Anirudhan,
An investigation into the sorption of heavy metals from
wastewaters by polyacrylamide-grafted iron(III) oxide,
J. Hazard. Mater., 91 (2002) 221–238.
- A. Afshar, S.A.S. Sadjadi, A. Mollahosseini, M.R. Eskandarian,
Polypyrrole-polyaniline/Fe3O4 magnetic nanocomposite
for the removal of Pb(II) from aqueous solution, Korean J.
Chem. Eng., 33 (2016) 669–677.
- J. Cai, M. Lei, Q. Zhang, J.-R. He, T. Chen, S. Liu, S.-H. Fu,
T.-T. Li, G. Liu, P. Fei, Electrospun composite nanofiber
mats of cellulose@organically modified montmorillonite for
heavy metal ion removal: design, characterization, evaluation
of absorption performance, Composites, Part A, 92 (2017)
10–16.
- Suman, A. Kardam, M. Gera, V.K. Jain, A novel reusable
nanocomposite for complete removal of dyes, heavy metals
and microbial load from water based on nanocellulose and
silver nano-embedded pebbles, Environ. Technol., 36 (2015)
706–714.
- A.H.A. Saad, A.M. Azzam, S.T. El-Wakeel, B.B. Mostafa,
M.B. Abd El-latif, Removal of toxic metal ions from wastewater
using ZnO@chitosan core-shell nanocomposite, Environ.
Nanotechnol. Monit. Manage., 9 (2018) 67–75.
- S. Gokila, T. Gomathi, P.N. Sudha, S. Anil, Removal of the
heavy metal ion chromiuim(VI) using chitosan and alginate
nanocomposites, Int. J. Biol. Macromol., 104 (2017) 1459–1468.
- G. Lofrano, M. Carotenuto, G. Libralato, R.F. Domingos,
A. Markus, L. Dini, R.K. Gautam, D. Baldantoni, M. Rossi,
S.K. Sharma, M.C. Chattopadhyaya, M. Giugni, S. Meric,
Polymer functionalized nanocomposites for metals removal
from water and wastewater: an overview, Water Res.,
92 (2016) 22–37.
- H.C.J. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs),
Chem. Soc. Rev., 43 (2014) 5415–5418.
- P. Kumar, V. Bansal, K.-H. Kim, E.E. Kwon, Metal–organic
frameworks (MOFs) as futuristic options for wastewater
treatment, J. Ind. Eng. Chem., 62 (2018) 130–145.
- L.P. Wang, G.Y. Wang, F. Wang, P.H. Wang, Effect of different
aromatic carboxylic acid ligands on the catalytic activities of
metal–organic frameworks, Adv. Mater. Res., 634–638 (2013)
513–517.
- K. Kowalski, Ferrocenyl-nucleobase complexes: Synthesis,
chemistry and applications, Coord. Chem. Rev., 317 (2016)
132–156.
- Y. Bian, N. Xiong, G. Zhu, Technology for the remediation of
water pollution: a review on the fabrication of metal–organic
frameworks, Processes, 6 (2018) 1–22.
- W. Liu, H. Chen, 1D energetic metal–organic frameworks:
synthesis and properties, Cailiao Daobao/Mater. Rev.,
32 (2018) 223–227.
- J. Dai, X. Xiao, S. Duan, J. Liu, J. He, J. Lei, L. Wang,
Synthesis of novel microporous nanocomposites of ZIF-8
on multiwalled carbon nanotubes for adsorptive removing
benzoic acid from water, Chem. Eng. J., 331 (2018) 64–74.
- H. Guo, Z. Zheng, Y. Zhang, H. Lin, Q. Xu, Highly selective
detection of Pb2+ by a nanoscale Ni-based metal–organic
framework fabricated through one-pot hydrothermal
reaction, Sens. Actuators, B, 248 (2017) 430–436.
- S. Kitagawa, M. Kondo, Functional micropore chemistry
of crystalline metal complex-assembled compounds,
Bull. Chem. Soc. Jpn., 71 (1998) 1739–1753.
- Z. Wang, S.M. Cohen, Postsynthetic modification of metal–organic frameworks, Chem. Soc. Rev., 38 (2009) 1315–1329.
- S.M. Cohen, Postsynthetic methods for the functionalization
of metal–organic frameworks, Chem. Rev., 112 (2012)
970–1000.
- J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications
of metal–organic frameworks in heterogeneous
supramolecular catalysis, Chem. Soc. Rev., 43 (2014) 6011–6061.
- B. Li, H.-M. Wen, W. Zhou, B. Chen, Porous Metal–organic
frameworks for gas storage and separation: what, how, and
why?, J. Phys. Chem. Lett., 5 (2014) 3468–3479.
- B. Li, H. Wang, B. Chen, Microporous metal–organic
frameworks for gas separation, Chem. - An Asian J., 9 (2014)
1474–1498.
- Y. Huang, S.C. Lee, K.F. Ho, S.S.H. Ho, N. Cao, Y. Cheng,
Y. Gao, Effect of ammonia on ozone-initiated formation of
indoor secondary products with emissions from cleaning
products, Atmos. Environ., 59 (2012) 224–231.
- B.O. Bolaji, Z. Huan, Ozone depletion and global warming:
case for the use of natural refrigerant – a review, Renewable
Sustainable Energy Rev., 18 (2013) 49–54.
- G.W. Peterson, G.W. Wagner, A. Balboa, J. Mahle, T. Sewell,
C.J. Karwacki, Ammonia vapor removal by Cu3(BTC)2 and its
characterization by MAS NMR, J. Phys. Chem. C, 113 (2009)
13906–13917.
- P.A. Kobielska, A.J. Howarth, O.K. Farha, S. Nayak, Metal–organic frameworks for heavy metal removal from water,
Coord. Chem. Rev., 358 (2018) 92–107.
- M.J. Katz, A.J. Howarth, P.Z. Moghadam, J.B. DeCoste,
R.Q. Snurr, J.T. Hupp, O.K. Farha, High volumetric uptake
of ammonia using Cu-MOF-74/Cu-CPO-27, Dalton Trans.,
45 (2016) 4150–4153.
- A.J. Rieth, Y. Tulchinsky, M. Dincă, High and reversible
ammonia uptake in mesoporous azolate metal–organic
frameworks with open Mn, Co, and Ni sites, J. Am. Chem.
Soc., 138 (2016) 9401–9404.
- K.C. Kim, P.Z. Moghadam, D. Fairen-Jimenez, R.Q. Snurr,
Computational screening of metal catecholates for ammonia
capture in metal–organic frameworks, Ind. Eng. Chem. Res.,
54 (2015) 3257–3267.
- J.N. Joshi, E.Y. Garcia-Gutierrez, C.M. Moran, J.I. Deneff,
K.S. Walton, Engineering copper carboxylate functionalities
on water stable metal–organic frameworks for enhancement
of ammonia removal capacities, J. Phys. Chem. C, 121 (2017)
3310–3319.
- N.M. Padial, E. Quartapelle-Procopio, C. Montoro, E. López,
J.E. Oltra, V. Colombo, A. Maspero, N. Masciocchi, S. Galli,
I. Senkovska, S. Kaskel, E. Barea, J.A.R. Navarro, Highly
hydrophobic isoreticular porous metal–organic frameworks
for the capture of harmful volatile organic compounds,
Angew. Chem. Int. Ed., 52 (2013) 8290–8294.
- Z. Zhao, S. Wang, Y. Yang, X. Li, J. Li, Z. Li, Competitive
adsorption and selectivity of benzene and water vapor on
the microporous metal–organic frameworks (HKUST-1),
Chem. Eng. J., 259 (2015) 79–89.
- A. Planchais, S. Devautour-Vinot, S. Giret, F. Salles, P. Trens,
A. Fateeva, T. Devic, P. Yot, C. Serre, N. Ramsahye, G. Maurin,
Adsorption of benzene in the cation-containing MOFs MIL-
141, J. Phys. Chem. C, 117 (2013) 19393–19401.
- W.W. He, G.S. Yang, Y.J. Tang, S.L. Li, S.R. Zhang,
Z.M. Su, Y.Q. Lan, Phenyl groups result in the highest
benzene storage and most efficient desulfurization in a series
of isostructural metal–organic frameworks, Chem. - A Eur. J.,
21 (2015) 9784–9789.
- D. Ma, Y. Li, Z. Li, Tuning the moisture stability of metal–organic frameworks by incorporating hydrophobic functional
groups at different positions of ligands, Chem. Commun.,
47 (2011) 7377–7379.
- W. Huang, J. Jiang, D. Wu, J. Xu, B. Xue, A.M. Kirillov, A highly
stable nanotubular MOF rotator for selective adsorption of
benzene and separation of xylene isomers, Inorg. Chem.,
54 (2015) 10524–10526.
- G.W. Peterson, J.J. Mahle, J.B. DeCoste, W.O. Gordon,
J.A. Rossin, Extraordinary NO2 removal by the metal–
organic framework UiO-66-NH2, Angew. Chem., 128 (2016)
6343–6346.
- A.M. Ebrahim, T.J. Bandosz, Effect of amine modification on
the properties of zirconium–carboxylic acid based materials
and their applications as NO2 adsorbents at ambient
conditions, Microporous Mesoporous Mater., 188 (2014)
149–162.
- C.O. Audu, H.G.T. Nguyen, C.Y. Chang, M.J. Katz, L. Mao,
O.K. Farha, J.T. Hupp, S.T. Nguyen, The dual capture of
AsV and AsIII by UiO-66 and analogues, Chem. Sci., 7 (2016)
6492–6498.
- J.B. DeCoste, T.J. Demasky, M.J. Katz, O.K. Farha, J.T. Hupp,
A UiO-66 analogue with uncoordinated carboxylic acids
for the broad-spectrum removal of toxic chemicals, New J.
Chem., 39 (2015) 2396–2399.
- J.Y. Lee, T.C. Keener, Y.J. Yang, Potential flue gas impurities
in carbon dioxide streams separated from coal-fired power
plants, J. Air Waste Manage. Assoc., 59 (2009) 725–732.
- K. Tan, P. Canepa, Q. Gong, J. Liu, D.H. Johnson, A. Dyevoich,
P.K. Thallapally, T. Thonhauser, J. Li, Y.J. Chabal, Mechanism
of preferential adsorption of SO2 into two microporous
paddle wheel frameworks M(bdc)(ted)0.5, Chem. Mater.,
25 (2013) 4653–4662.
- M. Savage, Y. Cheng, T.L. Easun, J.E. Eyley, S.P. Argent,
M.R. Warren, W. Lewis, C. Murray, C.C. Tang, M.D. Frogley,
G. Cinque, J. Sun, S. Rudić, R.T. Murden, M.J. Benham,
A.N. Fitch, A.J. Blake, A.J. Ramirez-Cuesta, S. Yang,
M. Schröder, Selective adsorption of sulfur dioxide in a robust
metal–organic framework material, Adv. Mater., 28 (2016)
8705–8711.
- X. Cui, Q. Yang, L. Yang, R. Krishna, Z. Zhang, Z. Bao, H. Wu,
Q. Ren, W. Zhou, B. Chen, H. Xing, Ultrahigh and selective SO2
uptake in inorganic anion-pillared hybrid porous materials,
Adv. Mater., 29 (2017) 1606929, doi: 10.1002/adma.201606929.
- C.E. Uzoigwe, L.C.S. Franco, M.D. Forrest, Iatrogenic Greenhouse
Gases: The Role of Anaesthetic Agents, British Journal
Hospital Medicine, MA Healthcare London, 2016, pp. 19–23.
- Y. Ishizawa, General anesthetic gases and the global
environment, Anesth. Analg., 112 (2011) 213–217.
- N. Gargiulo, A. Peluso, P. Aprea, M. Eić, D. Caputo, An
insight into clustering of halogenated anesthetics molecules
in metal–organic frameworks: evidence of adsorbate selfassociation
in micropores, J. Colloid Interface Sci., 554 (2019)
463–467.
- N. Gargiulo, A. Peluso, P. Aprea, Y. Hua, D. Filipović,
D. Caputo, M. Eić, A chromium-based metal–organic
framework as a potential high performance adsorbent for
anaesthetic vapours, RSC Adv., 4 (2014) 49478–49484.
- R.C. Ewing, F.N. von Hippel, Nuclear waste management in
the United States—starting over, Science, 325 (2009) 151–152.
- K.W. Chapman, P.J. Chupas, T.M. Nenoff, Radioactive iodine
capture in silver-containing mordenites through nanoscale
silver iodide formation, J. Am. Chem. Soc., 132 (2010)
8897–8899.
- J.-P. Lang, Q.-F. Xu, R.-X. Yuan, B.F. Abrahams, [WS4Cu4(4,4’-bpy)]4[WS4Cu4I4(4,4’-bpy)]2]infinity--an unusual 3D porous
coordination polymer formed from the preformed cluster
[Et4N]4[WS4Cu4I6], Angew. Chem. Int. Ed., 43 (2004) 4741–4745.
- Z.-M. Wang, Y.-J. Zhang, T. Liu, M. Kurmoo, S. Gao,
[Fe3(HCOO)6]: a permanent porous diamond framework
displaying H2/N2 adsorption, guest inclusion, and guestdependent
magnetism, Adv. Funct. Mater., 17 (2007)
1523–1536.
- M.-H. Zeng, Q.-X. Wang, Y.-X. Tan, S. Hu, H.-X. Zhao,
L.-S. Long, M. Kurmoo, Rigid pillars and double walls in a
porous metal–organic framework: single-crystal to singlecrystal,
controlled uptake and release of iodine and electrical
conductivity, J. Am. Chem. Soc., 132 (2010) 2561–2563.
- D.F. Sava, M.A. Rodriguez, K.W. Chapman, P.J. Chupas,
J.A. Greathouse, P.S. Crozier, T.M. Nenoff, Capture of volatile
iodine, a gaseous fission product, by zeolitic imidazolate
framework-8, J. Am. Chem. Soc., 133 (2011) 12398–12401.
- D. Haefner, T. Tranter, Methods of Gas Phase Capture of Iodine
From Fuel Reprocessing Off-Gas: A Literature Survey, Idaho
National Laboratory, Idaho Falls, Idaho 83415, 2007, pp. 1–25.
- T.D. Bennett, P.J. Saines, D.A. Keen, J.-C. Tan, A.K. Cheetham,
Ball-milling-induced amorphization of zeolitic imidazolate
frameworks (ZIFs) for the irreversible trapping of iodine,
Chem. - A Eur. J., 19 (2013) 7049–7055.
- F.G. Kerry, Industrial Gas Handbook: Gas Separation and
Purification, CRC Press, Boca Raton, 2007.
- M.A. Torcivia, S.M.E. Demers, K.L. Broadwater, D.B. Hunter,
Investigating the effects of Ag, Cu, and Pd functionalized
chabazite on the adsorption affinities of noble gases Xe, Kr,
and Ar, J. Phys. Chem. C, 127 (2023) 3800–3807.
- U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-
Arndt, J. Pastré, Metal–organic frameworks—prospective
industrial applications, J. Mater. Chem., 16 (2006) 626–636.
- P.K. Thallapally, J.W. Grate, R.K. Motkuri, Facile xenon
capture and release at room temperature using a metal–
organic framework: a comparison with activated charcoal,
Chem. Commun., 48 (2012) 347–349.
- J. Liu, P.K. Thallapally, D. Strachan, Metal–organic frameworks
for removal of Xe and Kr from nuclear fuel reprocessing
plants, Langmuir, 28 (2012) 11584–11589.
- D. Britt, D. Tranchemontagne, O.M. Yaghi, metal–organic
frameworks with high capacity and selectivity for harmful
gases, Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 11623–11627.
- C.-Y. Huang, M. Song, Z.-Y. Gu, H.-F. Wang, X.-P. Yan, Probing
the adsorption characteristic of metal–organic framework
MIL-101 for volatile organic compounds by quartz crystal
microbalance, Environ. Sci. Technol., 45 (2011) 4490–4496.
- K. Yang, Q. Sun, F. Xue, D. Lin, Adsorption of volatile organic
compounds by metal–organic frameworks MIL-101: influence
of molecular size and shape, J. Hazard. Mater., 195 (2011)
124–131.
- Z. Zhao, X. Li, S. Huang, Q. Xia, Z. Li, Adsorption and
diffusion of benzene on chromium-based metal–organic
framework MIL-101 synthesized by microwave irradiation,
Ind. Eng. Chem. Res., 50 (2011) 2254–2261.
- E. Quartapelle Procopio, F. Linares, C. Montoro, V. Colombo,
A. Maspero, E. Barea, J.A.R. Navarro, Cation-exchange
porosity tuning in anionic metal–organic frameworks for the
selective separation of gases and vapors and for catalysis,
Angew. Chem., 122 (2010) 7466–7469.
- V. Finsy, C.E.A. Kirschhock, G. Vedts, M. Maes, L. Alaerts,
D.E. De Vos, G.V. Baron, J.F.M. Denayer, Framework
breathing in the vapour-phase adsorption and separation of
xylene isomers with the metal–organic framework MIL-53,
Chem. - A Eur. J., 15 (2009) 7724–7731.
- H. Wu, Q. Gong, D.H. Olson, J. Li, Commensurate adsorption
of hydrocarbons and alcohols in microporous metal–organic
frameworks, Chem. Rev., 112 (2012) 836–868.
- N.A. Khan, S.H. Jhung, Remarkable adsorption capacity
of CuCl2-loaded porous vanadium benzenedicarboxylate
for benzothiophene, Angew. Chem. Int. Ed., 51 (2012)
1198–1201.
- Y. Takashima, V.M. Martínez, S. Furukawa, M. Kondo,
S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto,
S. Kitagawa, Molecular decoding using luminescence from
an entangled porous framework, Nat. Commun., 2 (2011) 168,
doi: 10.1038/ncomms1170.
- M. Ohba, K. Yoneda, G. Agustí, M.C. Muñoz, A.B. Gaspar,
J.A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki,
S. Kitagawa, Bidirectional chemo-switching of spin state in
a microporous framework, Angew. Chem. Int. Ed., 48 (2009)
4767–4771.
- S. Galli, N. Masciocchi, V. Colombo, A. Maspero, G. Palmisano,
F.J. López-Garzón, M. Domingo-García, I. Fernández-Morales,
E. Barea, J.A.R. Navarro, Adsorption of harmful organic
vapors by flexible hydrophobic bis-pyrazolate based MOFs,
Chem. Mater., 22 (2010) 1664–1672.
- C. Montoro, F. Linares, E. Quartapelle Procopio, I. Senkovska,
S. Kaskel, S. Galli, N. Masciocchi, E. Barea, J.A.R. Navarro,
Capture of nerve agents and mustard gas analogues by
hydrophobic robust MOF-5 type metal–organic frameworks,
J. Am. Chem. Soc., 133 (2011) 11888–11891.
- C. Yang, U. Kaipa, Q.Z. Mather, X. Wang, V. Nesterov,
A.F. Venero, M.A. Omary, Fluorous metal–organic frameworks
with superior adsorption and hydrophobic properties
toward oil spill cleanup and hydrocarbon storage, J. Am.
Chem. Soc., 133 (2011) 18094–18097.
- A. Pell, A. Márquez, J.F. López-Sánchez, R. Rubio, M. Barbero,
S. Stegen, F. Queirolo, P. Díaz-Palma, Occurrence of arsenic
species in algae and freshwater plants of an extreme arid
region in northern Chile, the Loa River Basin, Chemosphere,
90 (2013) 556–564.
- R.E. Vernon, Which elements are metalloids?, J. Chem. Educ.,
90 (2013) 1703–1707.
- B.-J. Zhu, X.-Y. Yu, Y. Jia, F.-M. Peng, B. Sun, M.-Y. Zhang, T. Luo,
J.-H. Liu, X.-J. Huang, Iron and 1,3,5-benzenetricarboxylic
metal–organic coordination polymers prepared by
solvothermal method and their application in efficient As(V)
removal from aqueous solutions, J. Phys. Chem. C, 116 (2012)
8601–8607.
- Z.-Q. Li, J.-C. Yang, K.-W. Sui, N. Yin, Facile synthesis of
metal–organic framework MOF-808 for arsenic removal,
Mater. Lett., 160 (2015) 412–414.
- C. Prum, R. Dolphen, P. Thiravetyan, Enhancing arsenic
removal from arsenic-contaminated water by Echinodorus
cordifolius−endophytic Arthrobacter creatinolyticus interactions,
J. Environ. Manage., 213 (2018) 11–19.
- T.A. Vu, G.H. Le, C.D. Dao, L.Q. Dang, K.T. Nguyen,
Q.K. Nguyen, P.T. Dang, H.T.K. Tran, Q.T. Duong,
T.V. Nguyen, G.D. Lee, Arsenic removal from aqueous
solutions by adsorption using novel MIL-53(Fe) as a highly
efficient adsorbent, RSC Adv., 5 (2015) 5261–5268.
- M. Filella, N. Belzile, Y.-W. Chen, Antimony in the
environment: a review focused on natural waters: I.
Occurrence, Earth-Sci. Rev., 57 (2002) 125–176.
- T.E. McKone, J.I. Daniels, Estimating human exposure
through multiple pathways from air, water, and soil,
Regul. Toxicol. Pharm., 13 (1991) 36–61.
- J.E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon,
E.J. DeMarco, M.H. Weston, A.A. Sarjeant, S.T. Nguyen,
P.C. Stair, R.Q. Snurr, O.K. Farha, J.T. Hupp, Vapor-phase
metalation by atomic layer deposition in a metal–organic
framework, J. Am. Chem. Soc., 135 (2013) 10294–10297.
- A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp,
O.K. Farha, Chemical, thermal and mechanical stabilities of
metal–organic frameworks, Nat. Rev. Mater., 1 (2016) 15018,
doi: 10.1038/natrevmats.2015.18.
- A.J. Howarth, M.J. Katz, T.C. Wang, A.E. Platero-Prats,
K.W. Chapman, J.T. Hupp, O.K. Farha, High efficiency
adsorption and removal of selenate and selenite from
water using metal–organic frameworks, J. Am. Chem. Soc.,
137 (2015) 7488–7494.
- S. Rangwani, A.J. Howarth, M.R. DeStefano, C.D. Malliakas,
A.E. Platero-Prats, K.W. Chapman, O.K. Farha, Adsorptive
removal of Sb(V) from water using a mesoporous Zr-based
metal–organic framework, Polyhedron, 151 (2018) 338–343.
- J. Li, X. Li, T. Hayat, A. Alsaedi, C. Chen, Screening of
zirconium-based metal–organic frameworks for efficient
simultaneous removal of antimonite (Sb(III)) and antimonate
(Sb(V)) from aqueous solution, ACS Sustainable Chem. Eng.,
5 (2017) 11496–11503.
- M. Kim, S.M. Cohen, Discovery, development, and
functionalization of Zr(IV)-based metal–organic frameworks,
CrystEngComm, 14 (2012) 4096–4104.
- X. He, X. Min, X. Luo, Efficient removal of antimony (III,
V) from contaminated water by amino modification of a
zirconium metal–organic framework with mechanism study,
J. Chem. Eng. Data, 62 (2017) 1519–1529.
- F. Ke, L.-G. Qiu, Y.-P. Yuan, F.-M. Peng, X. Jiang, A.-J. Xie,
Y.-H. Shen, J.-F. Zhu, Thiol-functionalization of metal–organic
framework by a facile coordination-based postsynthetic
strategy and enhanced removal of Hg2+ from water, J. Hazard.
Mater., 196 (2011) 36–43.
- L. Huang, M. He, B. Chen, B. Hu, A designable magnetic
MOF composite and facile coordination-based post-synthetic
strategy for the enhanced removal of Hg2+ from water,
J. Mater. Chem. A, 3 (2015) 11587–11595.
- H. Saleem, U. Rafique, R.P. Davies, Investigations on postsynthetically
modified UiO-66-NH2 for the adsorptive
removal of heavy metal ions from aqueous solution,
Microporous Mesoporous Mater., 221 (2016) 238–244.
- K.-K. Yee, N. Reimer, J. Liu, S.-Y. Cheng, S.-M. Yiu, J. Weber,
N. Stock, Z. Xu, Effective mercury sorption by thiol-laced
metal–organic frameworks: in strong acid and the vapor
phase, J. Am. Chem. Soc., 135 (2013) 7795–7798.
- S. Halder, J. Mondal, J. Ortega-Castro, A. Frontera, P. Roy, A Ni-based MOF for selective detection and removal of Hg2+
in aqueous medium: a facile strategy, Dalton Trans., 46 (2017)
1943–1950.
- Y. Manawi, G. McKay, N. Ismail, A. Kayvani Fard,
V. Kochkodan, M.A. Atieh, Enhancing lead removal from
water by complex-assisted filtration with acacia gum,
Chem. Eng. J., 352 (2018) 828–836.
- R. Ricco, K. Konstas, M.J. Styles, J.J. Richardson, R. Babarao,
K. Suzuki, P. Scopece, P. Falcaro, Lead(II) uptake by
aluminium based magnetic framework composites (MFCs) in
water, J. Mater. Chem. A, 3 (2015) 19822–19831.
- J. Zhang, Z. Xiong, C. Li, C. Wu, Exploring a thiolfunctionalized
MOF for elimination of lead and cadmium
from aqueous solution, J. Mol. Liq., 221 (2016) 43–50.
- J.M. Rivera, S. Rincón, C. Ben Youssef, A. Zepeda, Highly
efficient adsorption of aqueous Pb(II) with mesoporous metal–organic framework-5: an equilibrium and kinetic study,
J. Nanomater., 2016 (2016) 8095737, doi: 10.1155/2016/8095737.
- E. Tahmasebi, M.Y. Masoomi, Y. Yamini, A. Morsali,
Application of mechanosynthesized azine-decorated zinc(II)
metal–organic frameworks for highly efficient removal and
extraction of some heavy-metal ions from aqueous samples:
a comparative study, Inorg. Chem., 54 (2015) 425–433.
- F. Zou, R. Yu, R. Li, W. Li, Microwave-assisted synthesis of
HKUST-1 and functionalized HKUST-1-@H3PW12O40: selective
adsorption of heavy metal ions in water analyzed with
synchrotron radiation, ChemPhysChem, 14 (2013) 2825–2832.
- E. Rahimi, N. Mohaghegh, Removal of toxic metal ions
from sungun acid rock drainage using mordenite zeolite,
graphene nanosheets, and a novel metal–organic framework,
Mine Water Environ., 35 (2016) 18–28.
- Q. Yang, Q. Zhao, S. Ren, Q. Lu, X. Guo, Z. Chen, Fabrication
of core-shell Fe3O4@MIL-100(Fe) magnetic microspheres
for the removal of Cr(VI) in aqueous solution, J. Solid State
Chem., 244 (2016) 25–30.
- L. Aboutorabi, A. Morsali, E. Tahmasebi, O. Büyükgüngor,
Metal–organic framework based on isonicotinate
N-oxide for
fast and highly efficient aqueous phase Cr(VI) adsorption,
Inorg. Chem., 55 (2016) 5507–5513.
- K. Wang, X. Tao, J. Xu, N. Yin, Novel chitosan–MOF composite
adsorbent for the removal of heavy metal ions, Chem. Lett.,
45 (2016) 1365–1368.
- S. Rapti, A. Pournara, D. Sarma, I.T. Papadas, G.S. Armatas,
Y.S. Hassan, M.H. Alkordi, M.G. Kanatzidis, M.J. Manos,
Rapid, green and inexpensive synthesis of high quality UiO-66 amino-functionalized materials with exceptional capability
for removal of hexavalent chromium from industrial waste,
Inorg. Chem. Front., 3 (2016) 635–644.
- A. Ma, F. Ke, J. Jiang, Q. Yuan, Z. Luo, J. Liu, A. Kumar,
Two lanthanide-based metal–organic frameworks for highly
efficient adsorption and removal of fluoride ions from water,
CrystEngComm, 19 (2017) 2172–2177.
- M. Vithanage, P. Bhattacharya, Fluoride in the environment:
sources, distribution and defluoridation, Environ. Chem.
Lett., 13 (2015) 131–147.
- N. Zhang, X. Yang, X. Yu, Y. Jia, J. Wang, L. Kong, Z. Jin, B. Sun,
T. Luo, J. Liu, Al-1,3,5-benzenetricarboxylic metal–organic
frameworks: a promising adsorbent for defluoridation of
water with pH insensitivity and low aluminum residual,
Chem. Eng. J., 252 (2014) 220–229.
- K.-Y.A. Lin, Y.-T. Liu, S.-Y. Chen, Adsorption of fluoride to
UiO-66-NH2 in water: stability, kinetic, isotherm and thermodynamic
studies, J. Colloid Interface Sci., 461 (2016) 79–87.
- F. Ke, C. Peng, T. Zhang, M. Zhang, C. Zhou, H. Cai, J. Zhu,
X. Wan, Fumarate-based metal–organic frameworks as a new
platform for highly selective removal of fluoride from brick
tea, Sci. Rep., 8 (2018) 939, doi: 10.1038/s41598-018-19277-2.
- X.-H. Zhu, C.-X. Yang, X.-P. Yan, Metal–organic framework-801
for efficient removal of fluoride from water, Microporous
Mesoporous Mater., 259 (2018) 163–170.
- X. Zhang, F. Sun, J. He, H. Xu, F. Cui, W. Wang, Robust
phosphate capture over inorganic adsorbents derived from
lanthanum metal–organic frameworks, Chem. Eng. J.,
326 (2017) 1086–1094.
- S. Mazloomi, M. Yousefi, H. Nourmoradi, M. Shams,
Evaluation of phosphate removal from aqueous solution
using metal–organic framework; isotherm, kinetic and
thermodynamic study, J. Environ. Health Sci. Eng., 17 (2019)
209–218.
- H. Qiu, L. Yang, F. Liu, Y. Zhao, L. Liu, J. Zhu, M. Song,
Highly selective capture of phosphate ions from water by
a water stable metal–organic framework modified with
polyethyleneimine, Environ. Sci. Pollut. Res., 24 (2017)
23694–23703.
- T. Liu, J. Feng, Y. Wan, S. Zheng, L. Yang, ZrO2 nanoparticles
confined in metal–organic frameworks for highly effective
adsorption of phosphate, Chemosphere, 210 (2018) 907–916.
- K.-Y.A. Lin, S.-Y. Chen, A.P. Jochems, Zirconium-based metal–
organic frameworks: highly selective adsorbents for removal
of phosphate from water and urine, Mater. Chem. Phys.,
160 (2015) 168–176.
- Y. Feng, H. Jiang, S. Li, J. Wang, X. Jing, Y. Wang, M. Chen,
Metal–organic frameworks HKUST-1 for liquid-phase
adsorption of uranium, Colloids Surf., A, 431 (2013) 87–92.
- D. Sheng, L. Zhu, C. Xu, C. Xiao, Y. Wang, Y. Wang, L. Chen,
J. Diwu, J. Chen, Z. Chai, T.E. Albrecht-Schmitt, S. Wang,
Efficient and selective uptake of TcO4
– by a cationic metal–
organic framework material with open Ag+ sites, Environ.
Sci. Technol., 51 (2017) 3471–3479.
- N. Zhang, L.-Y. Yuan, W.-L. Guo, S.-Z. Luo, Z.-F. Chai, W.-Q. Shi,
Extending the use of highly porous and functionalized MOFs
to Th(IV) capture, ACS Appl. Mater. Interfaces, 9 (2017)
25216–25224.
- R. Das, C.M. Nagaraja, Noble metal-free Cu(I)-anchored
NHC-based MOF for highly recyclable fixation of CO2 under
RT and atmospheric pressure conditions, Green Chem.,
23 (2021) 5195–5204.
- M. Wen, G. Li, H. Liu, J. Chen, T. An, H. Yamashita, Metal–organic framework-based nanomaterials for adsorption
and photocatalytic degradation of gaseous pollutants:
recent progress and challenges, Environ. Sci. Nano, 6 (2019)
1006–1025.
- M. Ding, X. Cai, H.-L. Jiang, Improving MOF stability:
approaches and applications, Chem. Sci., 10 (2019)
10209–10230.
- P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas,
M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Porous metal–
organic-framework nanoscale carriers as a potential platform
for drug delivery and imaging, J. Am. Chem. Soc., 130 (2008)
6774–6780.
- H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, Rational
design of metal–organic frameworks for electroreduction of
CO2 to hydrocarbons and carbon oxygenates, ACS Cent. Sci.,
8 (2022) 1506–1517.
- C. Li, Z. Zhuang, F. Huang, Z. Wu, Y. Hong, Z. Lin, Recycling
rare earth elements from industrial wastewater with
flowerlike nano-Mg(OH)2, ACS Appl. Mater. Interfaces,
5 (2013) 9719–9725.
- H. Furukawa, F. Gándara, Y.B. Zhang, J. Jiang, W.L. Queen,
M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal–
organic frameworks and related materials, J. Am. Chem. Soc.,
136 (2014) 4369–4381.
- S.S. Chui, S.M. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams,
A chemically functionalizable nanoporous material, Science,
283 (1999) 1148–1150.
- H. Xu, J. Gao, X. Qian, J. Wang, H. He, Y. Cui, Y. Yang,
Z. Wang, G. Qian, Metal–organic framework nanosheets for
fast-response and highly sensitive luminescent sensing of
Fe3+, J. Mater. Chem. A, 4 (2016) 10900–10905.
- S. Kumar, S. Jain, M. Nehra, N. Dilbaghi, G. Marrazza,
K.-H. Kim, Green synthesis of metal–organic frameworks:
a state-of-the-art review of potential environmental and
medical applications, Coord. Chem. Rev., 420 (2020) 213407,
doi: 10.1016/j.ccr.2020.213407.