References
- D. Polak, M. Szwast, Analysis of the influence of process
parameters on the properties of homogeneous and
heterogeneous membranes for gas separation, Membranes,
12 (2022) 1016, doi: 10.3390/membranes12101016.
- A. Iulianelli, E. Drioli, Membrane engineering: latest
advancements in gas separation and pre-treatment processes,
petrochemical industry and refinery, and future perspectives
in emerging applications, Fuel Process. Technol., 206 (2020)
106464, doi: 10.1016/j.fuproc.2020.106464.
- H. Jin, L. Pei, L. Zheng, Energy-efficient process intensification
for post-combustion CO2 capture: a modeling approach,
Energy, 158 (2018) 471–483.
- X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue,
S. Kaliaguine, Membrane gas separation technologies for
biogas upgrading, RSC Adv., 5 (2015) 24399–24448.
- Z.Y. Yeo, T.L. Chew, P.W. Zhu, A.R. Mohamed, S.-P. Chai,
Conventional processes and membrane technology for carbon
dioxide removal from natural gas: a review, J. Nat. Gas Chem.,
21 (2012) 282–298.
- Y. Han, W.S. Winston Ho, Polymeric membranes for CO2
separation and capture, J. Membr. Sci., 628 (2021) 119244,
doi: 10.1016/j.memsci.2021.119244.
- K. Nocoń-Szmajda, A. Wolińska-Grabczyk, A. Jankowski,
U. Szeluga, M. Wójtowicz, J. Konieczkowska, A. Hercog,
Gas transport properties of mixed matrix membranes based
on thermally rearranged poly(hydroxyimide)s filled with
inorganic porous particles, Sep. Purif. Technol., 242 (2020)
116778, doi: 10.1016/j.seppur.2020.116778.
- H. Shamsipur, B.A. Dawood, P.M. Budd, P. Bernardo, G. Clarizia,
J.C. Jansen, Thermally rearrangeable
PIM-polyimides for gas
separation membranes, Macromolecules, 47 (2014) 5595–5606.
- Y. Wang, B.S. Ghanem, Y. Han, I. Pinnau, State-of-the-art
polymers of intrinsic microporosity for
high-performance
gas separation membranes, Curr. Opin. Chem. Eng., 35 (2022)
100755, doi: 10.1016/j.coche.2021.100755.
- N.E. León, Z. Liu, M. Irani, W.J. Koros, How to get the best gas
separation membranes from state-of-the-art glassy polymers,
Macromolecules, 55 (2022) 1457–1473.
- G. Dong, H. Li, V. Chen, Challenges and opportunities for
mixed-matrix membranes for gas separation, J. Mater. Chem. A,
1 (2013) 4610–4630.
- D. Polak, M. Szwast, Material and process tests of heterogeneous
membranes containing ZIF-8, SiO2 and
POSS-Ph,
Materials, 15 (2022) 6455, doi: 10.3390/ma15186455.
- M.M.H. Shah Buddin, A.L. Ahmad, A review on metal-organic
frameworks as filler in mixed matrix membrane: recent
strategies to surpass upper bound for CO2 separation, J. CO2
Util., 51 (2021) 101616, doi: 10.1016/j.jcou.2021.101616.
- D. Polak, J. Sułkowska, M. Szwast, The influence of surfactant
Pluronic P123 addition on the mixed matrix membrane
PEBAX® 2533 – ZIF-8 separation properties, Desal. Water Treat.,
214 (2021) 64–73.
- X. Chen, L.F. Dumée, Polyhedral oligomeric silsesquioxane
(POSS) nano-composite separation membranes − a review, Adv.
Eng. Mater., 21 (2019) 1800667, doi: 10.1002/adem.201800667.
- L. Yang, Z. Tian, X. Zhang, X. Wu, Y. Wu, Y. Wang, D. Peng,
S. Wang, H. Wu, Z. Jiang, Enhanced CO2 selectivities by
incorporating CO2-philic PEG-POSS into polymers of intrinsic
microporosity membrane, J. Membr. Sci., 543 (2017) 69–78.
- D. Zhao, J. Ren, H. Li, X. Li, M. Deng, Gas separation properties
of poly(amide-6-b-ethylene oxide)/amino modified multiwalled
carbon nanotubes mixed matrix membranes, J. Membr.
Sci., 467 (2014) 41–47.
- E.A. Feijani, A. Tavassoli, H. Mahdavi, H. Molavi, Effective gas
separation through graphene oxide containing mixed matrix
membranes, J. Appl. Polym. Sci., 135 (2018) 46271, doi: 10.1002/app.46271.
- L. Liu, C. Amit, X. Feng, CO2/N2 separation by poly(ether block
amide) thin film hollow fiber composite membranes, Ind. Eng.
Chem. Res., 44 (2005) 6874–6882.
- H.Z. Chen, Z. Thong, P. Li, T.-S. Chung, High performance
composite hollow fiber membranes for CO2/H2 and CO2/N2
separation, Int. J. Hydrogen Energy, 39 (2014) 5043–5053.
- M. Teramoto, N. Ohnishi, N. Takeuchi, S. Kitada, H. Matsuyama,
N. Matsumiya, H. Mano, Separation and enrichment of carbon
dioxide by capillary membrane module with permeation of
carrier solution, Sep. Purif. Technol., 30 (2003) 215–227.
- S.S. Shojaie, B.K. William, A.R. Greenberg, Dense polymer
film and membrane formation via the dry-cast process Part I.
Model development, J. Membr. Sci., 94 (1994) 255–280.
- M. Cavazzuti, Optimization Methods: From Theory to Design
Scientific and Technological Aspects in Mechanics, Springer
Science & Business, Springer-Verlag Berlin Heidelberg,
2012, pp. 13–42.
- M. Rabiej, Analizy statystyczne z programami Statistica i
Excel, Helion, Gliwice, 2018.
- Ž.R. Lazić, Design of Experiments in Chemical Engineering:
A Practical Guide, WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2006.
- F.M. Elfghi, A hybrid statistical approach for modeling and
optimization of RON: a comparative study and combined
application of response surface methodology (RSM) and
artificial neural network (ANN) based on design of experiment
(DoE), Chem. Eng. Res. Des., 113 (2016) 264–272.
- T. Visser, G.H. Koops, M. Wessling, On the subtle balance
between competitive sorption and plasticization effects in
asymmetric hollow fiber gas separation membranes, J. Membr.
Sci., 252 (2005) 265–277.
- O.C. David, D. Gorri, A. Urtiaga, I. Ortiz, Mixed gas separation
study for the hydrogen recovery from
H2/CO/N2/CO2 post
combustion mixtures using a Matrimid membrane, J. Membr.
Sci., 378 (2011) 359–368.