References

  1. M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair, M. Sadeghi, Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic, Front. Pharmacol., 12 (2021) 643972, doi: 10.3389/fphar.2021.643972.
  2. R.G. Morgado, A. Pereira, D.N. Cardoso, M. Prodana, C. Malheiro, A.R.R. Silva, A. Vinhas, A.M.V.M. Soares, S. Loureiro, The effects of different temperatures in mercury toxicity to the terrestrial isopod Porcellionides pruinosus, Environ. Pollut., 314 (2022) 120209, doi: 10.1016/j.envpol.2022.120209.
  3. S. Xin, B. Wang, Y. Yuan, S. Wang, Assessment of the spatial variations of mercury and methylmercury in the sediment of a lake and its inflow river estuaries, Water, 15 (2023) 1494, doi: 10.3390/w15081494.
  4. H. Ziaei, B. Rao, T.V. Wood, U. Garza-Rubalcava, A. Alborzi, H. Zhou, P. Bireta, N. Grosso, D. Reible, Assessment and management of mercury leaching from a riverbank, Toxics, 11 (2023) 179, doi: 10.3390/toxics11020179.
  5. A. Carravieri, S. Lorioux, F. Angelier, O. Chastel, C. Albert, V.S. Bråthen, É. Brisson-Curadeau, M. Clairbaux, K. Delord, M. Giraudeau, S. Perret, T. Poupart, C. Ribout, A. Viricel-Pante, D. Grémillet, P. Bustamante, J. Fort, Carryover effects of winter mercury contamination on summer concentrations and reproductive performance in little auks, Environ. Pollut., 318 (2023) 120774, doi: 10.1016/j.envpol.2022.120774.
  6. R. Shrestha, S. Ban, S. Devkota, S. Sharma, R. Joshi, A.P. Tiwari, H.Y. Kim, M.K. Joshi, Technological trends in heavy metals removal from industrial wastewater: a review, J. Environ. Chem. Eng., 9 (2021) 105688, doi: 10.1016/j.jece.2021.105688.
  7. H. Albatrni, H. Qiblawey, M.H. El-Naas, Comparative study between adsorption and membrane technologies for the removal of mercury, Sep. Purif. Technol., 257 (2021) 117833, doi: 10.1016/j.seppur.2020.117833.
  8. M. Ugrina, M. Gaberšek, A. Daković, I. Nuić, Preparation and characterization of the sulfur-impregnated natural zeolite clinoptilolite for Hg(II) removal from aqueous solutions, Processes, 9 (2021) 21, doi: 10.3390/pr9020217.
  9. K. Hua, X.L. Xu, Z.P. Luo, D. Fang, R. Bao, J.H. Yi, Effective removal of mercury ions in aqueous solutions:
    a review, Curr. Nanosci., 16 (2020) 363–375.
  10. E. Quijada-Maldonado, J. Romero, Solvent extraction of rareearth elements with ionic liquids: toward a selective and sustainable extraction of these valuable elements, Curr. Opin. Green Sustainable Chem., 27 (2021) 100428, doi: 10.1016/j.cogsc.2020.100428.
  11. J.-C. Lee, K. Kurniawan, S. Kim, V.T. Nguyen, B.D. Pandey, Ionic liquids-assisted solvent extraction of precious metals from chloride solutions, Sep. Purif. Rev., 52 (2023) 242–261.
  12. F.J. Alguacil, Facilitated chromium(VI) transport across an ionic liquid membrane impregnated with Cyphos IL102, Molecules, 24 (2019) 2437, doi: 10.3390/molecules24132437.
  13. D. Zheng, D. Hua, Y. Hong, A.R. Ibrahim, A. Yao, J. Pan, G. Zhan, Functions of ionic liquids in preparing membranes for liquid separations: a review, Membranes, 10 (2020) 395, doi: 10.3390/membranes10120395.
  14. M. Inês G.S. Almeida, R.W. Cattrall, S.D. Kolev, Polymer inclusion membranes (PIMs) in chemical analysis -
    a review, Anal. Chim. Acta, 987 (2017) 1–14.
  15. Ct. Yue, P. Sun, Fw. Li, Phosphonium Ionic Liquids, S. Zhang, Ed., Encyclopedia of Ionic Liquids, Springer, Singapore, 2020.
  16. L. Lupa, L. Cocheci, A.M. Dobos, M.D. Onofrei, P. Negrea, A. Filimon, Metal ions removal from contaminated water using membranes functionalized with ionic liquids, Water, 14 (2022) 4105, doi: 10.3390/w14244105.
  17. K. Witt, W. Urbaniak, M.A. Kaczorowska, D. Bożejewicz, Simultaneous recovery of precious and heavy metal ions from waste electrical and electronic equipment (WEEE) using polymer films containing Cyphos IL 101, Polymers, 13 (2021) 1454, doi: 10.3390/polym13091454.
  18. H. Mahandra, F. Faraji, A. Azizitorghabeh, A. Ghahreman, Selective extraction and recovery of gold from complex thiosulfate pregnant leach liquor using Cyphos IL 101, Ind. Eng. Chem. Res., 61 (2022) 5612–5619.
  19. D. Bożejewicz, M.A. Kaczorowska, K. Witt, Recent advances in the recovery of precious metals (Au, Ag, Pd) from acidic and WEEE solutions by solvent extraction and polymer inclusion membrane processes – a mini-review, Desal. Water Treat., 246 (2022) 12–24.
  20. I. Zawierucha, A. Nowik-Zajac, J. Lagiewka, G. Malina, Separation of mercury(II) from industrial wastewater through polymer inclusion membranes with calix[4]pyrrole derivative, Membranes, 12 (2022) 492, doi: 10.3390/membranes12050492.
  21. G. Elias, S. Díez, C. Fontàs, System for mercury preconcentration in natural waters based on a polymer inclusion membrane incorporating an ionic liquid, J. Hazard. Mater., 371 (2019) 316–322.
  22. G. Elias, S. Díez, H. Zhang, C. Fontàs, Development of a new binding phase for the diffusive gradients in thin films technique based on an ionic liquid for mercury determination, Chemosphere, 245 (2020) 125671, doi: 10.1016/j.chemosphere.2019.125671.
  23. M.A. Habila, Z.A. AlOthman, A.A. Ghfar, M.I.M. Al-Zaben, A.A.S. Alothman, A.A. Abdeltawab, A. El-Marghany, M. Sheikh, Phosphonium-based ionic liquid modified activated carbon from mixed recyclable waste for mercury(II) uptake, Molecules, 24 (2019) 570, doi: 10.3390/molecules24030570.
  24. S. Bahrami, L. Dolatyari, M.R. Yaftian, Polymer inclusion membranes composed of poly(vinylidene fluoride-cohexafluoropropylene) and trihexyltetradecylphosphonium chloride, or trioctylmethylammonium chloride: kinetics and isotherms of Cr(VI) removal, Iran. Polym. J., 32 (2023) 897–909.
  25. A. Makówka, B. Pospiech, Studies on extraction and permeation of lanthanum(III) and cerium(III) using Cyphos IL 104 as extractant and ion carrier, Sep. Sci. Technol., 55 (2020), 2193–2203.
  26. E. Radzymińska-Lenarcik, I. Pyszka, W. Urbaniak, The use of polymer membranes for the recovery of copper, zinc and nickel from model solutions and jewellery waste, Polymers, 15 (2023) 1149, doi: 10.3390/polym15051149.
  27. E. Anticó, C. Fontàs, R. Vera, G. Mostazo, V. Salvadó, H. Guasch, A novel Cyphos IL 104-based polymer inclusion membrane (PIM) probe to mimic biofilm zinc accumulation, Sci. Total Environ., 715 (2020) 136938, doi: 10.1016/j.scitotenv.2020.136938.
  28. K. Witt, M.A. Kaczorowska, D. Bozejewicz, W. Urbaniak, Efficient recovery of noble metal ions (Pd2+, Ag+, Pt2+, and Au3+) from aqueous solutions using N,N’-bis(salicylidene) ethylenediamine (Salen) as an extractant (classic solvent extraction) and carrier (polymer membranes), Membranes, 11 (2021) 863, doi: 10.3390/membranes11110863.
  29. A.F. Alwan, H.I. Khalaf, Synthesis of polylactic acid using Zn powder under microwave irradiation, IOP Conf. Ser.: Mater. Sci. Eng., 571 (2019) 012085, doi: 10.1088/1757-899X/571/1/012085.
  30. X. Han, D. Liu, Di(2-ethylhexyl) adipate (DEHA) detection in Antarctic krill (Euphasia superba Dana), Polar Res., 37 (2018) 1457395, doi: 10.1080/17518369.2018.1457395.
  31. D. Cholico-Gonzalez, M. Avila-Rodriguez, G. Cote, A. Chagnes, Chemical properties of trihexyl(tetradecyl)phosphonium chloride and bis(2,4,4-trimethylpentyl)phosphinic acid mixtures: interaction study by FT-IR and NMR spectroscopies, J. Mol. Liq., 187 (2013) 165–170.
  32. K.-Y. Law, Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right, J. Phys. Chem. Lett., 5 (2014) 686–688.
  33. Y. Lu, Z. Wu, M. Li, Q. Liu, D. Wang, Hydrophilic PVAco-PE nanofiber membrane functionalized with iminodiacetic acid by solid-phase synthesis for heavy metal ions removal, React. Funct. Polym., 82 (2014) 98–102.