References

  1. B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R.D. Tyagi, G. Buelna, Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach, Bioresour. Technol., 224 (2017) 1–12.
  2. T. aus der Beek, F.-A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Pharmaceuticals in the environment – global occurrences and perspectives, Environ. Toxicol. Chem., 35 (2016) 823–835.
  3. J. Rogowska, M. Cieszynska-Semenowicz, W. Ratajczyk, L. Wolska, Micropollutants in treated wastewater, Ambio, 49 (2020) 487–503.
  4. A. Rastogi, M.K. Tiwari, M.M. Ghangrekar, A review on environmental occurrence, toxicity and microbial degradation of non-steroidal anti-inflammatory drugs (NSAIDs), J. Environ. Manage., 300 (2021) 113694, doi: 10.1016/j.jenvman.2021.113694.
  5. D. Wojcieszyńska, H. Guzik, U. Guzik, Non-steroidal antiinflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment, Sci. Total Environ., 834 (2022) 155317, doi: 10.1016/j.scitotenv.2022.155317.
  6. J. Kuczyńska, B. Nieradko-Iwanicka, Comparison of the effects of ketoprofen and ketoprofen lysine salt on the Wistar rats’ nervous system, kidneys and liver after ethyl alcohol intoxication, Biomed. Pharmacother., 161 (2023) 114456, doi: 10.1016/j.biopha.2023.114456.
  7. V.C. Ziesenitz, T. Welzel, M. van Dyk, P. Saur, M. Gorenflo, J.N. van den Anker, Efficacy and safety of NSAIDs in infants: a comprehensive review of the literature of the past 20 years, Pediatr. Drugs, 24 (2022) 603–655.
  8. V. Mijatović, J. Ćalasan, O. Horvat, A. Sabo, Z. Tomić, V. Radulović, Consumption of non-steroidal
    anti-inflammatory drugs in Serbia: a comparison with Croatia and Denmark during 2005–2008, Eur. J. Clin. Pharmacol., 67 (2011) 203–207.
  9. N.N. Zulkarnain, N. Anuar, N.A. Johari, S.R. Sheikh Abdullah, A.R. Othman, Cytotoxicity evaluation of ketoprofen found in pharmaceutical wastewater on HEK 293 cell growth and metabolism, Environ. Toxicol. Pharmacol., 80 (2020) 103498, doi: 10.1016/j.etap.2020.103498.
  10. T.H. Galligan, J.W. Mallord, V.M. Prakash, K.P. Bhusal, A.B.M. Sarowar Alam, F.M. Anthony, R. Dave, A. Dube, K. Shastri, Y. Kumar, N. Prakash, S. Ranade, R. Shringarpure, D. Chapagain, I.P. Chaudhary, A.B. Joshi, K. Paudel, T. Kabir, S. Ahmed, K.Z. Azmiri, R.J. Cuthbert, C.G.R. Bowden, R.E. Green, Trends in the availability of the vulture-toxic drug, diclofenac, and other NSAIDs in South Asia, as revealed by covert pharmacy surveys, Bird Conserv. Int., 31 (2021) 337–353.
  11. S.R. de Solla, L.E. King, E.A.M. Gilroy, Environmental exposure to non-steroidal anti-inflammatory drugs and potential contribution to eggshell thinning in birds, Environ. Int., 171 (2023) 107638, doi: 10.1016/j.envint.2022.107638.
  12. M. Biel-Maeso, C. Corada-Fernández, P.A. Lara-Martín, Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater, Environ. Pollut., 235 (2018) 312–321.
  13. S. Mozia, R. Rajakumaran, K. Szymański, M. Gryta, Removal of ketoprofen from surface water in a submerged photocatalytic membrane reactor utilizing membrane distillation: effect of process parameters and evaluation of long‐term performance, J. Chem. Technol. Biotechnol., 98 (2023) 1125–1136.
  14. D. Woldemariam, A. Kullab, U. Fortkamp, J. Magner, H. Royen, A. Martin, Membrane distillation pilot plant trials with pharmaceutical residues and energy demand analysis, Chem. Eng. J., 306 (2016) 471–483.
  15. C. Fang, O. Garcia-Rodriguez, C. Shang, J. Imbrogno, T.M. Swenson, O. Lefebvre, S. Zhang, An omniphobic membrane with macro-corrugation for the treatment of real pharmaceutical wastewater via membrane distillation, J. Membr. Sci., 676 (2023) 121582, doi: 10.1016/j.memsci.2023.121582.
  16. K.C. Wijekoon, F.I. Hai, J. Kang, W.E. Price, W. Guo, H.H. Ngo, T.Y. Cath, L.D. Nghiem, A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal, Bioresour. Technol., 159 (2014) 334–341.
  17. M.B. Asif, F.I. Hai, J. Kang, J.P. van de Merwe, F.D.L. Leusch, W.E. Price, L.D. Nghiem, Biocatalytic degradation of pharmaceuticals, personal care products, industrial chemicals, steroid hormones and pesticides in a membrane distillationenzymatic bioreactor, Bioresour. Technol., 247 (2018) 528–536.
  18. R.L. Ramos, Y.A.R. Lebron, V.R. Moreira, M.F. Martins, L.V.S. Santos, M.C.S. Amaral, Direct contact membrane distillation as an approach for water treatment with phenolic compounds, J. Environ. Manage., 303 (2022) 114117, doi: 10.1016/j.jenvman.2021.114117.
  19. R.L. Ramos, M.F. Martins, Y.A.R. Lebron, V.R. Moreira, B.G. Reis, L.B. Grossi, M.C.S. Amaral, Membrane distillation process for phenolic compounds removal from surface water, J. Environ. Chem. Eng., 9 (2021) 105588, doi: 10.1016/j.jece.2021.105588.
  20. A.B. Yeszhanov, I.V. Korolkov, Y.G. Gorin, S.S. Dosmagambetova, M.V. Zdorovets, Membrane distillation of pesticide solutions using hydrophobic track-etched membranes, Chem. Pap., 74 (2020) 3445–3453.
  21. J. Plattner, C. Kazner, G. Naidu, T. Wintgens, S. Vigneswaran, Removal of selected pesticides from groundwater by membrane distillation, Environ. Sci. Pollut. Res., 25 (2018) 20336–20347.
  22. H. Attia, S. Alexander, C.J. Wright, N. Hilal, Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD), Desalination, 420 (2017) 318–329.
  23. A. Shaheen, S. AlBadi, B. Zhuman, H. Taher, F. Banat, F. AlMarzooqi, Photothermal air gap membrane distillation for the removal of heavy metal ions from wastewater, Chem. Eng. J., 431 (2022) 133909, doi: 10.1016/j.cej.2021.133909.
  24. A.K. Manna, M. Sen, A.R. Martin, P. Pal, Removal of arsenic from contaminated groundwater by solar-driven membrane distillation, Environ. Pollut., 158 (2010) 805–811.
  25. W. Wang, S. Aleid, P. Wang, Decentralized co-generation of fresh water and electricity at point of consumption, Adv. Sustainable Syst., 4 (2020) 2000005, doi: 10.1002/adsu.202000005.
  26. L. Fortunato, Y. Jang, J.G. Lee, S. Jeong, S. Lee, T.O. Leiknes, N. Ghaffour, Fouling development in direct contact membrane distillation: non-invasive monitoring and destructive analysis, Water Res., 132 (2018) 34–41.
  27. L.D. Tijing, Y.C. Woo, J.S. Choi, S. Lee, S.H. Kim, H.K. Shon, Fouling and its control in membrane distillation-a review, J. Membr. Sci., 475 (2015) 215–244.
  28. B.B. Ashoor, S. Mansour, A. Giwa, V. Dufour, S.W. Hasan, Principles and applications of direct contact membrane distillation (DCMD): a comprehensive review, Desalination, 398 (2016) 222–246.
  29. M.T.T. Ngo, B.Q. Diep, H. Sano, Y. Nishimura, S. Boivin, H. Kodamatani, H. Takeuchi, S.C.W. Sakti, T. Fujioka, Membrane distillation for achieving high water recovery for potable water reuse, Chemosphere, 288 (2022) 132610, doi: 10.1016/j.chemosphere.2021.132610.
  30. K. Szymański, M. Gryta, D. Darowna, S. Mozia, A new submerged photocatalytic membrane reactor based on membrane distillation for ketoprofen removal from various aqueous matrices, Chem. Eng. J., 435 (2022) 134872, doi: 10.1016/j.cej.2022.134872.
  31. D. Amaya-Vías, J.A. López-Ramírez, S. Gray, J. Zhang, M. Duke, Diffusion behavior of humic acid during desalination with air gap and water gap membrane distillation, Water Res., 158 (2019) 182–192.
  32. G. Naidu, S. Jeong, S.J. Kim, I.S. Kim, S. Vigneswaran, Organic fouling behavior in direct contact membrane distillation, Desalination, 347 (2014) 230–239.
  33. G. Naidu, S. Jeong, S. Vigneswaran, Interaction of humic substances on fouling in membrane distillation for seawater desalination, Chem. Eng. J., 262 (2015) 946–957.
  34. C.E.W. Steinberg, S. Kamara, V.Y. Prokhotskaya, L. Manusadzianas, T.A. Karasyova, M.A. Timofeyev, Z. Jie, A. Paul, T. Meinelt, V.F. Farjalla, A.Y.O. Matsuo, B. Kent Burnison, R. Menzel, Dissolved humic substances – ecological driving forces from the individual to the ecosystem level?, Freshwater Biol., 51 (2006) 1189–1210.
  35. T.S. Murbach, R. Glávits, J.R. Endres, A.E. Clewell, G. Hirka, A. Vértesi, E. Béres, I. Pasics Szakonyiné, A toxicological evaluation of a fulvic and humic acids preparation, Toxicol. Rep., 7 (2020) 1242–1254.
  36. X. Tang, Y. Zhang, W. Li, J. Geng, H. Ren, K. Xu, Mechanism and toxicity evaluation of catalytic ozonation over Cu/Ce–Al2O3 system aiming at degradation of humic acid in real wastewater, Sci. Rep.-UK, 11 (2021) 8748, doi: 10.1038/s41598-021-83804-x.
  37. M.S. Diniz, R. Salgado, V.J. Pereira, G. Carvalho, A. Oehmen, M.A.M. Reis, J.P. Noronha, Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio), Sci. Total. Environ., 505 (2015) 282–289.
  38. B. Rangasamy, D. Hemalatha, C. Shobana, B. Nataraj, M. Ramesh, Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen, Chemosphere, 213 (2018) 423–433.
  39. Y. Gao, J. Zhou, Y. Rao, H. Ning, J. Zhang, J. Shi, N. Gao, Comparative study of degradation of ketoprofen and paracetamol by ultrasonic irradiation: mechanism, toxicity and DBP formation, Ultrason. Sonochem., 82 (2022) 105906, doi: 10.1016/j.ultsonch.2021.105906.
  40. A.R. Almeida, F. Jesus, J.F. Henriques, T.S. Andrade, Â. Barreto, O. Koba, P. Thai Giang, A.M.V.M. Soares, M. Oliveira, I. Domingues, The role of humic acids on gemfibrozil toxicity to zebrafish embryos, Chemosphere, 220 (2019) 556–564.
  41. M. You, X. You, X. Yang, J. Hu, Y. Lyu, W. Sun, Black carbon and humic acid alleviate the toxicity of antibiotics to a cyanobacterium Synechocystis sp., Environ. Pollut., 316 (2023) 120646, doi: 10.1016/j.envpol.2022.120646.
  42. T. Ding, K. Lin, B. Yang, M. Yang, J. Li, Toxic effects and metabolic fate of carbamazepine in diatom Navicula sp. as influenced by humic acid and nitrogen species, J. Hazard. Mater., 378 (2019) 120763, doi: 10.1016/j.jhazmat.2019.120763.
  43. K.D. Jones, W.H. Huang, Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic, in the presence of compost humic substances in aqueous systems, J. Hazard. Mater., 103 (2003) 93–105.
  44. S. Srisurichan, R. Jiraratananon, A.G. Fane, Humic acid fouling in the membrane distillation process, Desalination, 174 (2005) 63–72.
  45. D. Hou, L. Zhang, Z. Wang, H. Fan, J. Wang, H. Huang, Humic acid fouling mitigation by ultrasonic irradiation in membrane distillation process, Sep. Purif. Technol., 154 (2015) 328–337.
  46. R. Caban, FTIR-ATR spectroscopic, thermal and microstructural studies on polypropylene-glass fiber composites, J. Mol. Struct., 1264 (2022) 133181, doi: 10.1016/j.molstruc.2022.133181.
  47. N. Nayrac, J.P. Bellenger, P.A. Segura, Screening of polymer types and chemical weathering in macro- and meso-plastics found on lake and river beaches using a combined chemometric approach, Anal. Methods-UK, 14 (2022) 4977–4989.
  48. W. Machado, J.C. Franchini, M. de Fátima Guimarães, J. Tavares Filho, Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil, Heliyon, 6 (2020) e04078, doi: 10.1016/j.heliyon.2020.e04078.
  49. W.M. Davis, C.L. Erickson, C.T. Johnston, J.J. Delfino, J.E. Porter, Quantitative Fourier transform infrared spectroscopic investigation humic substance functional group composition, Chemosphere, 38 (1999) 2913–2928.
  50. C.D. Hatch, K.M. Gierlus, J. Zahardis, J. Schuttlefield, V.H. Grassian, Water uptake of humic and fulvic acid: measurements and modelling using single parameter Köhler Theory, Environ. Chem., 6 (2009) 380–388.
  51. T. Tanaka, Functional groups and reactivity of size-fractionated Aldrich humic acid, Thermochim. Acta, 532 (2012) 60–64.
  52. M.A.C.K. Hansima, J. Ketharani, D.R. Samarajeewa, K.G.N. Nanayakkara, A.C. Herath, M. Makehelwala, S. Indika, K.B.S.N. Jinadasa, S.K. Weragoda, Y. Wei, R. Weerasooriya, Probing fouling mechanism of anion exchange membranes used in electrodialysis self-reversible treatment by humic acid and calcium ions, Chem. Eng. J. Adv., 8 (2021) 100173, doi: 10.1016/j.ceja.2021.100173.
  53. S. Samios, T. Lekkas, A. Nikolaou, S. Golfinopoulos, Structural investigations of aquatic humic substances from different watersheds, Desalination, 210 (2007) 125–137.
  54. M.J. Morra, D.B. Marshall, C.M. Lee, FT‐IR analysis of Aldrich humic acid in water using cylindrical internal reflectance, Commun. Soil. Sci. Plan., 20 (2008) 851–867.
  55. H.S. Shin, H. Moon, S.S. Yun, Spectroscopic investigations of soil humic and fulvic acids from Okch’ǒn Basin, B. Kor. Chem. Soc., 15 (1994) 777–781.
  56. J.J. Alberts, Z. Filip, Metal binding in estuarine humic and fulvic acids: FTIR analysis of humic acid-metal complexes, Environ. Technol., 19 (2010) 923–933.
  57. G.S. Dhillon, A. Gillespie, D. Peak, K.C.J. Van Rees, Spectroscopic investigation of soil organic matter composition for shelterbelt agroforestry systems, Geoderma, 298 (2017) 1–13.
  58. M. Wu, M. Song, M. Liu, C. Jiang, Z. Li, Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence, Sci. Rep.-UK, 6 (2016) 32858, doi: 10.1038/srep32858.
  59. B. Mayans, J. Pérez-Esteban, C. Escolástico, E. Eymar, A. Masaguer, Evaluation of commercial humic substances and other organic amendments for the immobilization of copper through 13C CPMAS NMR, FTIR, and DSC analyses, Agronomy, 9 (2019) 762, doi: 10.3390/agronomy9110762.
  60. N. Senesi, T.M. Miano, M.R. Provenzano, G. Brunetti, Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origin, Sci. Total Environ., 81–82 (1989) 143–156.
  61. J.S. Ribeiro, S.S. Ok, S. Garrigues, M. de la Guardia, FTIR tentative characterization of humic acids extracted from organic materials, Spectrosc. Lett., 34 (2001) 179–190.
  62. A. Maritchù Guiresse, L. Seibane, J.D. Scheiner, F.H. Gutiérrez-Boem, M. Kaemmerer, D. Gavalda, M. Hafidi, J.C. Revel, Evolution of humic fraction in a redoxi-luvisol after application of granular sewage sludge, Agrochimica, 48 (2004) 62–72.
  63. H.H. Mungondori, S. Ramujana, D.M. Katwire, R.T. Taziwa, Synthesis of a novel visible light responsive
    γ-Fe2O3/SiO2/CTiO2 magnetic nanocomposite for water treatment, Water Sci. Technol., 78 (2018) 2500–2510.
  64. I.M. McIntosh, A.R.L. Nichols, K. Tani, E.W. Llewellin, Accounting for the species-dependence of the 3,500 cm–1 H2Ot infrared molar absorptivity coefficient: implications for hydrated volcanic glasses, Am. Mineral., 102 (2017) 1677–1689.