References
- R. Panda, R. Parween, N. Singh, K. Yoo, R.K. Jyothi, M.K. Jha,
Scrap computer keyboards a sustainable resource for silver
(Ag) and low density oil (L D Oil), Sustainable Mater. Technol.,
33 (2022) e00471, doi: 10.1016/j.susmat.2022.e00471.
- V. Fiandra, L. Sannino, C. Andreozzi, Photovoltaic waste
as source of valuable materials: a new recovery mechanical
approach, J. Cleaner Prod., 385 (2023) 135702, doi: 10.1016/j.
jclepro.2022.135702.
- S. Suman, D.K. Rajak, Z.H. Ansari, Comparative leaching of
spent fluorescent lamp for extracting yttrium and europium:
kinetics and optimization studies, Geosyst. Eng., 26 (2023)
181–189.
- N. Nagarajan, P. Panchatcharam, Cost-effective and ecofriendly
copper recovery from waste printed circuit boards
using organic chemical leaching, Heliyon, 9 (2023) e13806,
doi: 10.1016/j.heliyon.2023.e13806.
- R.K. Nekouei, F. Pahlevani, M. Assefi, S. Maroufi, V. Sahajwalla,
Selective isolation of heavy metals from spent electronic waste
solution by macroporous ion-exchange resins, J. Hazard. Mater.,
371 (2019) 389–396.
- B. Segura-Bailón, G.T. Lapidus, Selective leaching of base/precious metals from E-waste of cellphone printed circuit
boards (EWPCB): advantages and challenges in a case
study, Hydrometallurgy, 217 (2023) 106040, doi: 10.1016/j.hydromet.2023.106040.
- P.R. Jadhao, S. Mishra, A. Singh, K.K. Pant, K.D.P. Nigam,
A sustainable route for the recovery of metals from waste
printed circuit boards using methanesulfonic acid, J. Environ.
Manage., 335 (2023) 117581, doi: 10.1016/j.jenvman.2023.117581.
- A.F.M. Nogueira, A.R.F. Carreira, S.J.R. Vargas, H. Passos,
N. Schaeffer, J.A.P. Coutinho, Simple gold recovery from
e-waste leachate by selective precipitation using a quaternary
ammonium salt, Sep. Purif. Technol., 316 (2023) 123797,
doi: 10.1016/j.seppur.2023.123797.
- D. Bożejewicz, M.A. Kaczorowska, K. Witt, Recent advances in
the recovery of precious metals (Au, Ag, Pd) from acidic and
WEEE solutions by solvent extraction and polymer inclusion
membrane processes – a mini-review, Desal. Water Treat.,
246 (2022) 12–24.
- T. Wu, Z. Lin, Y. Zhang, N. Kanazawa, T. Komiyama, C. Zhu,
E. Kikuchi, J. Shi, R. Liang,
Poly-N-phenylglycine@multi-walled
carbon nanotubes composite membrane for improvement of
Au(III) adsorption, Sep. Purif. Technol., 304 (2023) 122404,
doi: 10.1016/j.seppur.2022.122404.
- T.S. Vo, M.M. Hossai, H.M. Jeong, K. Kim, Heavy metal removal
applications using adsorptive membranes, Nano Convergence,
7 (2020) 36, doi: 10.1186/s40580-020-00245-4.
- N.S.W. Zulkefeli, S.K. Weng, N.S. Abdul Halim, Removal of
heavy metals by polymer inclusion membranes, Curr. Pollut.
Rep., 4 (2018) 84–92.
- B. Keskin, Zeytuncu-Gökoğlu, I. Koyuncu, Polymer inclusion
membrane applications for transport of metal ions: a critical
review, Chemosphere, 279 (2021) 130604, doi: 10.1016/j.chemosphere.2021.130604.
- D. Bożejewicz, B. Ośmiałowski, M.A. Kaczorowska, K. Witt,
2,6-Bis((benzoyl-R)amino)pyridine (R = H, 4-Me, and 4-NMe2)
derivatives for the removal of Cu(II), Ni(II), Co(II), and Zn(II)
ions from aqueous solutions in classic solvent extraction and a
membrane extraction, Membranes, 11 (2021) 233,
doi: 10.3390/membranes11040233.
- B. Wang, Z. Li, Q. Lang, M. Tan, C. Ratanatamskul, M. Lee,
Y. Liu, Y. Zhang, A comprehensive investigation on the
components in ionic liquid-based polymer inclusion membrane
for Cr(VI) transport during electrodialysis, J. Membr. Sci.,
604 (2020) 118016, doi: 10.1016/j.memsci.2020.118016.
- E. Radzymińska-Lenarcik, I. Pyszka, W. Urbaniak, The use
of polymer membranes for the recovery of copper, zinc and
nickel from model solutions and jewellery waste, Polymers,
15 (2023) 1149, doi: 10.3390/polym15051149.
- P. Szczepański, H. Guo, K. Dzieszkowski, Z Rafiński, A. Wolan,
K. Fatyeyeva, J. Kujawa, W. Kujawski, New reactive ionic liquids
as carriers in polymer inclusion membranes for transport
and separation of Cd(II), Cu(II), Pb(II), and Zn(II) ions from
chloride aqueous solutions, J. Membr. Sci., 638 (2021) 119674,
doi: 10.1016/j.memsci.2021.119674.
- K. Witt, W. Urbaniak, M.A. Kaczorowska, D. Bożejewicz,
Simultaneous recovery of precious and heavy metal ions
from waste electrical and electronic equipment (WEEE) using
polymer films containing Cyphos IL 101, Polymers, 13 (2021)
1454, doi: 10.3390/polym13091454.
- C. Florindo, L.C. Branco, I.M. Marrucho, Quest for greensolvent
design: from hydrophilic to hydrophobic (deep) eutectic
solvents, Chem. Sustainable Chem., 12 (2019) 1549–1559.
- D.J.G.P. van Osch, D. Parmentier, C.H.J.T. Dietz, A. van den
Bruinhorst, R. Tuiner, M.C. Kroon, Removal of alkali and
transition metal ions from water with hydrophobic deep
eutectic solvents, Chem. Commun., 52 (2016) 11987–11990.
- T. Hanada, M. Goto, Synergistic deep eutectic solvents for
lithium extraction, ACS Sustainable Chem. Eng., 9 (2021)
2152–2160.
- M.K. Tran, M.-T.F. Rodrigues, K. Kato, G. Babu, P.M. Ajayan,
Deep eutectic solvents for catode recycling
of Li-ion batteries,
Nat. Energy, 4 (2019) 339–345.
- M.H. Chakrabarti, F.S. Mjalli, I.M.A. Nashef, M.A. Hashim,
M.A. Hussian, L. Bahadori, Ch.T.J. Low, Prospects of applying
ionic liquids and deep eutectic solvents for renewable
energy storage by means of redox flow batteries, Renewable
Sustainable Energy Rev., 30 (2014) 254–270.
- Ch.Y. Foong, M.F.M. Zulkifli, M.D.H. Wirzal, M.A. Bustam,
L.H.M. Nor, M.S. Saad, N.S.A. Halim, Cosmo-RS prediction
and experimental investigation of amino acid ionic liquidbased
deep eutectic solvents for copper removal, J. Mol. Liq.,
333 (2021) 115884, doi: 10.1016/j.molliq.2021.115884.
- F. Sharezaei, M. Shamsipur, M.B. Gholivand, P. Zohrabi,
N. Babajani, A. Ari, A.M. Zonouz, H. Shekaari, A highly selective
green supported liquid membrane by using a hydrophobic
deep eutectic solvent for carrier-less transport of silver ions,
Anal. Methods, 12 (2020) 4682–4690.
- L. Liu, G.Q. Huan, Ch. Yin, X. Yang, Q. Xie, Efficient recovery
of Au(III) through PVDF-based polymer inclusion membranes
containing hydrophobic deep eutectic solvent, J. Mol. Liq.,
343 (2021) 117670, doi: 10.1016/j.molliq.2021.117670.
- R. Liu, Y. Geng, Zh. Tian, N. Wang, M. Wang, G. Zhang, Y. Yang,
Extraction of platinum(IV) by hydrophobic deep eutectic
solvents based on trioctylphosphine oxide, Hydrometallurgy,
199 (2021) 105521, doi: 10.1016/j.hydromet.2020.105521.
- C. Velez, O. Acevedo, Simulation of deep eutectic solvents:
progress to promises, WIREs Comput. Mol. Sci., 12 (2022)
e1598, doi: 10.1002/wcms.1598.
- E.L. Smith, A.P. Abbot, K.S. Ryder, Deep eutectic solvents (DESs)
and their application, Chem. Rev., 114 (2014) 11060–11082.
- B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein,
A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan,
E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski,
G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep
eutectic solvents: a review of fundamentals and applications,
Chem. Rev., 121 (2021) 1232–1285.
- M.K.A. Omar, M. Hayyan, Glycerol-based deep eutectic
solvents: physical properties, J. Mol. Liq., 215 (2016) 98–103.
- M.S. Rahman, R. Roy, B. Jadhav, M.N. Hossain, M.A. Halim,
D.E. Raynie, Formulation, structure, and applications of
therapeutic and amino acid-based deep eutectic solvents:
an overview, J. Mol. Liq., 321 (2021) 114745, doi: 10.1016/j.molliq.2020.114745.
- S.P. Ijardar, V. Singh, R.L. Gardas, Revisiting the physicochemical
properties and applications of deep eutectic solvents,
Molecules, 27 (2022) 1368, doi: 10.3390/molecules27041368.
- L.I.N. Tomé, V. Baiäo, W. da Silva, Ch.M.A. Brett, Deep eutectic
solvents for the production and application of new materials,
Appl. Mater. Today, 10 (2018) 30–50.
- M.A. Kaczorowska, D. Bożejewicz, K. Witt, W. Urabaniak,
A new removal application of 2-benzoylpyridine – efficient
removal of silver ions from acidic aqueous solution via
adsorption processes on polymeric material and classic solvent
extraction, Chem. Process. Eng., 43 (2022) 369–382.
- A. Mali, H.S. Dhattarwal, H.K. Kashyap, Distinct solvation
structures of CO2 and SO2 in reline and ethaline deep eutectic
solvents revealed by AIMD simulations, J. Phys. Chem. B,
125 (2021) 1852–1860.
- N. Azizi, S. Dezfooli, M.M. Hashemi, A sustainable approach
to the Ugi reaction in deep eutectic solvent, C.R. Chim.,
16 (2013) 1098–1102.
- K. Grundke, K. Pöschel, A. Synytska, R. Frenzel, A. Drechsler,
M. Nitschke, A.L. Cordeiro, P. Uhlmann, P.B. Welzel, Experimental
studies of contact angle hysteresis phenomena on
polymer surfaces — toward the understanding and control of
wettability for different applications, Adv. Colloid Interface Sci.,
222 (2015) 350–376.
- D.M. de Oliveira, M.O.H. Cioffi, K.C.C. de Carvalho Benini,
H.J.C. Voorwald, Effects of plasma treatment on the sorption
properties of coconut fibers, Procedia Eng., 200 (2017) 357–364.
- Gh.M. Al.-Senani, F.F. Al-Fawzan, Adsorption study of heavy
metal ions from aqueous solution by nanoparticle of wild
herbs, Egypt. J. Aquat. Res., 44 (2018) 187–194.
- N.-S. Abdul-Halim, P.G. Whitten, L.D. Nghiem, Characterising
poly(vinyl chloride)/Aliquat 336 polymer inclusion membranes:
evidence of phase separation and its role in metal
extraction, Sep. Purif. Technol., 119 (2013) 14–18.
- K. Annane, A. Sahmourne, P. Montels, S. Tingry, Polymer
inclusion membrane extraction of cadmium(II) with Aliquat
336 in micro-channel cell, Chem. Eng. Res. Des., 94 (2015)
605–610.
- F. Sellami, O. Kebiche-Senhadji, S. Marais, L. Colasse,
K. Fatyeyeva, Enhanced removal of Cr(VI) by polymer inclusion
membrane based on poly(vinylidene fluoride) and Aliquat
336, Sep. Purif. Technol., 248 (2020) 117038, doi: 10.1016/j.seppur.2020.117038.
- Y. Yildiz, A. Manzak, O. Tutkun, Selective extraction of cobalt
ions through polymer inclusion membrane containing Aliquat
336 as a carrier, Desal. Water Treat., 57(10) (2016) 4616–4623.
- N.S. Abdul-Halim, N.F. Shoparwe, S.K. Weng, N.S.W. Zulkefeli,
Heavy metal ions adsorption from CTA-Aliquat 336 polymer
inclusion membranes (PIMs): experimental and kinetic study,
AIP Conf. Proc., 2124 (2019) 020014, doi: 10.1063/1.5117074.
- S. Bahrami, L. Dolatyari, H. Shayani-Jam, M.R. Yaftian,
S.D. Kolev, On the potential of a poly(vinylidenefluoride-cohexafluoropropylene)
polymer inclusion membrane containing
Aliquat® 336 and dibutyl phthalate for V(V) extraction from
sulfate solutions, Membranes, 12 (2022) 90, doi: 10.3390/membranes12010090.
- S. Cӑprӑrescu, R.G. Zgӑrian, G. Tihan, V. Pucar, E.E. Totu,
C. Modrogan, A.-L. Chiriac, C.A. Nicolae, Biopolymeric
membrane enriched with chitosan and silver for metallic ions
removal, Polymers, 12 (2020) 1792, doi: 10.3390/polym12081792.
- A. Almasian, M. Giahi, Gh.Ch. Fard, S.A. Dehdast, L. Maleknia,
Removal of heavy metals ions by modified PAN/PANI-nylon
core-shell nanofibers membrane: filtration performance,
antifouling and regeneration behavior, Chem. Eng. J., 351 (2018)
1166–1178.
- N.A. Milevsky, I.V. Zinovieva, Y.A. Zakhodyaeva, A.A. Voshkin,
Extractive separation of Co/Ni pair with the deep eutectic
solvent Aliquat 336/Timol, Theor. Found. Chem. Eng., 56 (2022)
45–52.
- M.K. Kaul, V. Mandella, M.L. Dietz, Systematic evaluation of
hydrophobic deep eutectic solvents as alternative media for
the extraction of metal ions from aqueous solution, Talanta,
243 (2022) 123373, doi: 10.1016/j.talanta.2022.123373.
- M. Mubashir, F.N. D’Angelo, F. Gallucci, Recent advances and
challenges of deep eutectic solvent based supported liquid
membranes, Sep. Purif. Rev., 51 (2022) 226–244.