References

  1. R. Panda, R. Parween, N. Singh, K. Yoo, R.K. Jyothi, M.K. Jha, Scrap computer keyboards a sustainable resource for silver (Ag) and low density oil (L D Oil), Sustainable Mater. Technol., 33 (2022) e00471, doi: 10.1016/j.susmat.2022.e00471.
  2. V. Fiandra, L. Sannino, C. Andreozzi, Photovoltaic waste as source of valuable materials: a new recovery mechanical approach, J. Cleaner Prod., 385 (2023) 135702, doi: 10.1016/j. jclepro.2022.135702.
  3. S. Suman, D.K. Rajak, Z.H. Ansari, Comparative leaching of spent fluorescent lamp for extracting yttrium and europium: kinetics and optimization studies, Geosyst. Eng., 26 (2023) 181–189.
  4. N. Nagarajan, P. Panchatcharam, Cost-effective and ecofriendly copper recovery from waste printed circuit boards using organic chemical leaching, Heliyon, 9 (2023) e13806, doi: 10.1016/j.heliyon.2023.e13806.
  5. R.K. Nekouei, F. Pahlevani, M. Assefi, S. Maroufi, V. Sahajwalla, Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins, J. Hazard. Mater., 371 (2019) 389–396.
  6. B. Segura-Bailón, G.T. Lapidus, Selective leaching of base/precious metals from E-waste of cellphone printed circuit boards (EWPCB): advantages and challenges in a case study, Hydrometallurgy, 217 (2023) 106040, doi: 10.1016/j.hydromet.2023.106040.
  7. P.R. Jadhao, S. Mishra, A. Singh, K.K. Pant, K.D.P. Nigam, A sustainable route for the recovery of metals from waste printed circuit boards using methanesulfonic acid, J. Environ. Manage., 335 (2023) 117581, doi: 10.1016/j.jenvman.2023.117581.
  8. A.F.M. Nogueira, A.R.F. Carreira, S.J.R. Vargas, H. Passos, N. Schaeffer, J.A.P. Coutinho, Simple gold recovery from e-waste leachate by selective precipitation using a quaternary ammonium salt, Sep. Purif. Technol., 316 (2023) 123797, doi: 10.1016/j.seppur.2023.123797.
  9. D. Bożejewicz, M.A. Kaczorowska, K. Witt, Recent advances in the recovery of precious metals (Au, Ag, Pd) from acidic and WEEE solutions by solvent extraction and polymer inclusion membrane processes – a mini-review, Desal. Water Treat., 246 (2022) 12–24.
  10. T. Wu, Z. Lin, Y. Zhang, N. Kanazawa, T. Komiyama, C. Zhu, E. Kikuchi, J. Shi, R. Liang,
    Poly-N-phenylglycine@multi-walled carbon nanotubes composite membrane for improvement of Au(III) adsorption, Sep. Purif. Technol., 304 (2023) 122404, doi: 10.1016/j.seppur.2022.122404.
  11. T.S. Vo, M.M. Hossai, H.M. Jeong, K. Kim, Heavy metal removal applications using adsorptive membranes, Nano Convergence, 7 (2020) 36, doi: 10.1186/s40580-020-00245-4.
  12. N.S.W. Zulkefeli, S.K. Weng, N.S. Abdul Halim, Removal of heavy metals by polymer inclusion membranes, Curr. Pollut. Rep., 4 (2018) 84–92.
  13. B. Keskin, Zeytuncu-Gökoğlu, I. Koyuncu, Polymer inclusion membrane applications for transport of metal ions: a critical review, Chemosphere, 279 (2021) 130604, doi: 10.1016/j.chemosphere.2021.130604.
  14. D. Bożejewicz, B. Ośmiałowski, M.A. Kaczorowska, K. Witt, 2,6-Bis((benzoyl-R)amino)pyridine (R = H, 4-Me, and 4-NMe2) derivatives for the removal of Cu(II), Ni(II), Co(II), and Zn(II) ions from aqueous solutions in classic solvent extraction and a membrane extraction, Membranes, 11 (2021) 233,
    doi: 10.3390/membranes11040233.
  15. B. Wang, Z. Li, Q. Lang, M. Tan, C. Ratanatamskul, M. Lee, Y. Liu, Y. Zhang, A comprehensive investigation on the components in ionic liquid-based polymer inclusion membrane for Cr(VI) transport during electrodialysis, J. Membr. Sci., 604 (2020) 118016, doi: 10.1016/j.memsci.2020.118016.
  16. E. Radzymińska-Lenarcik, I. Pyszka, W. Urbaniak, The use of polymer membranes for the recovery of copper, zinc and nickel from model solutions and jewellery waste, Polymers, 15 (2023) 1149, doi: 10.3390/polym15051149.
  17. P. Szczepański, H. Guo, K. Dzieszkowski, Z Rafiński, A. Wolan, K. Fatyeyeva, J. Kujawa, W. Kujawski, New reactive ionic liquids as carriers in polymer inclusion membranes for transport and separation of Cd(II), Cu(II), Pb(II), and Zn(II) ions from chloride aqueous solutions, J. Membr. Sci., 638 (2021) 119674, doi: 10.1016/j.memsci.2021.119674.
  18. K. Witt, W. Urbaniak, M.A. Kaczorowska, D. Bożejewicz, Simultaneous recovery of precious and heavy metal ions from waste electrical and electronic equipment (WEEE) using polymer films containing Cyphos IL 101, Polymers, 13 (2021) 1454, doi: 10.3390/polym13091454.
  19. C. Florindo, L.C. Branco, I.M. Marrucho, Quest for greensolvent design: from hydrophilic to hydrophobic (deep) eutectic solvents, Chem. Sustainable Chem., 12 (2019) 1549–1559.
  20. D.J.G.P. van Osch, D. Parmentier, C.H.J.T. Dietz, A. van den Bruinhorst, R. Tuiner, M.C. Kroon, Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents, Chem. Commun., 52 (2016) 11987–11990.
  21. T. Hanada, M. Goto, Synergistic deep eutectic solvents for lithium extraction, ACS Sustainable Chem. Eng., 9 (2021) 2152–2160.
  22. M.K. Tran, M.-T.F. Rodrigues, K. Kato, G. Babu, P.M. Ajayan, Deep eutectic solvents for catode recycling
    of Li-ion batteries, Nat. Energy, 4 (2019) 339–345.
  23. M.H. Chakrabarti, F.S. Mjalli, I.M.A. Nashef, M.A. Hashim, M.A. Hussian, L. Bahadori, Ch.T.J. Low, Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries, Renewable Sustainable Energy Rev., 30 (2014) 254–270.
  24. Ch.Y. Foong, M.F.M. Zulkifli, M.D.H. Wirzal, M.A. Bustam, L.H.M. Nor, M.S. Saad, N.S.A. Halim, Cosmo-RS prediction and experimental investigation of amino acid ionic liquidbased deep eutectic solvents for copper removal, J. Mol. Liq., 333 (2021) 115884, doi: 10.1016/j.molliq.2021.115884.
  25. F. Sharezaei, M. Shamsipur, M.B. Gholivand, P. Zohrabi, N. Babajani, A. Ari, A.M. Zonouz, H. Shekaari, A highly selective green supported liquid membrane by using a hydrophobic deep eutectic solvent for carrier-less transport of silver ions, Anal. Methods, 12 (2020) 4682–4690.
  26. L. Liu, G.Q. Huan, Ch. Yin, X. Yang, Q. Xie, Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent, J. Mol. Liq., 343 (2021) 117670, doi: 10.1016/j.molliq.2021.117670.
  27. R. Liu, Y. Geng, Zh. Tian, N. Wang, M. Wang, G. Zhang, Y. Yang, Extraction of platinum(IV) by hydrophobic deep eutectic solvents based on trioctylphosphine oxide, Hydrometallurgy, 199 (2021) 105521, doi: 10.1016/j.hydromet.2020.105521.
  28. C. Velez, O. Acevedo, Simulation of deep eutectic solvents: progress to promises, WIREs Comput. Mol. Sci., 12 (2022) e1598, doi: 10.1002/wcms.1598.
  29. E.L. Smith, A.P. Abbot, K.S. Ryder, Deep eutectic solvents (DESs) and their application, Chem. Rev., 114 (2014) 11060–11082.
  30. B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep eutectic solvents: a review of fundamentals and applications, Chem. Rev., 121 (2021) 1232–1285.
  31. M.K.A. Omar, M. Hayyan, Glycerol-based deep eutectic solvents: physical properties, J. Mol. Liq., 215 (2016) 98–103.
  32. M.S. Rahman, R. Roy, B. Jadhav, M.N. Hossain, M.A. Halim, D.E. Raynie, Formulation, structure, and applications of therapeutic and amino acid-based deep eutectic solvents: an overview, J. Mol. Liq., 321 (2021) 114745, doi: 10.1016/j.molliq.2020.114745.
  33. S.P. Ijardar, V. Singh, R.L. Gardas, Revisiting the physicochemical properties and applications of deep eutectic solvents, Molecules, 27 (2022) 1368, doi: 10.3390/molecules27041368.
  34. L.I.N. Tomé, V. Baiäo, W. da Silva, Ch.M.A. Brett, Deep eutectic solvents for the production and application of new materials, Appl. Mater. Today, 10 (2018) 30–50.
  35. M.A. Kaczorowska, D. Bożejewicz, K. Witt, W. Urabaniak, A new removal application of 2-benzoylpyridine – efficient removal of silver ions from acidic aqueous solution via adsorption processes on polymeric material and classic solvent extraction, Chem. Process. Eng., 43 (2022) 369–382.
  36. A. Mali, H.S. Dhattarwal, H.K. Kashyap, Distinct solvation structures of CO2 and SO2 in reline and ethaline deep eutectic solvents revealed by AIMD simulations, J. Phys. Chem. B, 125 (2021) 1852–1860.
  37. N. Azizi, S. Dezfooli, M.M. Hashemi, A sustainable approach to the Ugi reaction in deep eutectic solvent, C.R. Chim., 16 (2013) 1098–1102.
  38. K. Grundke, K. Pöschel, A. Synytska, R. Frenzel, A. Drechsler, M. Nitschke, A.L. Cordeiro, P. Uhlmann, P.B. Welzel, Experimental studies of contact angle hysteresis phenomena on polymer surfaces — toward the understanding and control of wettability for different applications, Adv. Colloid Interface Sci., 222 (2015) 350–376.
  39. D.M. de Oliveira, M.O.H. Cioffi, K.C.C. de Carvalho Benini, H.J.C. Voorwald, Effects of plasma treatment on the sorption properties of coconut fibers, Procedia Eng., 200 (2017) 357–364.
  40. Gh.M. Al.-Senani, F.F. Al-Fawzan, Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs, Egypt. J. Aquat. Res., 44 (2018) 187–194.
  41. N.-S. Abdul-Halim, P.G. Whitten, L.D. Nghiem, Characterising poly(vinyl chloride)/Aliquat 336 polymer inclusion membranes: evidence of phase separation and its role in metal extraction, Sep. Purif. Technol., 119 (2013) 14–18.
  42. K. Annane, A. Sahmourne, P. Montels, S. Tingry, Polymer inclusion membrane extraction of cadmium(II) with Aliquat 336 in micro-channel cell, Chem. Eng. Res. Des., 94 (2015) 605–610.
  43. F. Sellami, O. Kebiche-Senhadji, S. Marais, L. Colasse, K. Fatyeyeva, Enhanced removal of Cr(VI) by polymer inclusion membrane based on poly(vinylidene fluoride) and Aliquat 336, Sep. Purif. Technol., 248 (2020) 117038, doi: 10.1016/j.seppur.2020.117038.
  44. Y. Yildiz, A. Manzak, O. Tutkun, Selective extraction of cobalt ions through polymer inclusion membrane containing Aliquat 336 as a carrier, Desal. Water Treat., 57(10) (2016) 4616–4623.
  45. N.S. Abdul-Halim, N.F. Shoparwe, S.K. Weng, N.S.W. Zulkefeli, Heavy metal ions adsorption from CTA-Aliquat 336 polymer inclusion membranes (PIMs): experimental and kinetic study, AIP Conf. Proc., 2124 (2019) 020014, doi: 10.1063/1.5117074.
  46. S. Bahrami, L. Dolatyari, H. Shayani-Jam, M.R. Yaftian, S.D. Kolev, On the potential of a poly(vinylidenefluoride-cohexafluoropropylene) polymer inclusion membrane containing Aliquat® 336 and dibutyl phthalate for V(V) extraction from sulfate solutions, Membranes, 12 (2022) 90, doi: 10.3390/membranes12010090.
  47. S. Cӑprӑrescu, R.G. Zgӑrian, G. Tihan, V. Pucar, E.E. Totu, C. Modrogan, A.-L. Chiriac, C.A. Nicolae, Biopolymeric membrane enriched with chitosan and silver for metallic ions removal, Polymers, 12 (2020) 1792, doi: 10.3390/polym12081792.
  48. A. Almasian, M. Giahi, Gh.Ch. Fard, S.A. Dehdast, L. Maleknia, Removal of heavy metals ions by modified PAN/PANI-nylon core-shell nanofibers membrane: filtration performance, antifouling and regeneration behavior, Chem. Eng. J., 351 (2018) 1166–1178.
  49. N.A. Milevsky, I.V. Zinovieva, Y.A. Zakhodyaeva, A.A. Voshkin, Extractive separation of Co/Ni pair with the deep eutectic solvent Aliquat 336/Timol, Theor. Found. Chem. Eng., 56 (2022) 45–52.
  50. M.K. Kaul, V. Mandella, M.L. Dietz, Systematic evaluation of hydrophobic deep eutectic solvents as alternative media for the extraction of metal ions from aqueous solution, Talanta, 243 (2022) 123373, doi: 10.1016/j.talanta.2022.123373.
  51. M. Mubashir, F.N. D’Angelo, F. Gallucci, Recent advances and challenges of deep eutectic solvent based supported liquid membranes, Sep. Purif. Rev., 51 (2022) 226–244.