References

  1. https://powietrze.gios.gov.pl/pjp/publications/card/3077 (Access: 09.03.2023).
  2. https://sip.lex.pl/akty-prawne/dzienniki-UE/dyrektywa-2010-75-ue-w-sprawie-emisji-przemyslowych-zintegrowane-67999082 (Access: 09.03.2023).
  3. M. Lou, J.L. Bao, L. Zhou, G.N. Naidu, H. Robatjazi, A.I. Bayles, H.O. Everitt, P. Nordlander, E.A. Carter, N.J. Halas, Direct H2S decomposition by plasmonic photocatalysis: efficient remediation plus sustainable hydrogen production, ACS Energy Lett., 7 (2022) 3666–3674.
  4. M.K. Suleman, K.K. Lau, Y.F. Yeong, Plasticization and swelling in polymeric membranes in CO2 removal from natural gas, Chem. Eng. Technol., 39 (2016) 1604–1616.
  5. A. Pudi, M. Rezaei, V. Signorini, M.P. Andersson, M.G. Baschetti, S.S. Mansouri, Hydrogen sulfide capture and removal technologies: a comprehensive review of recent developments and emerging trends, Sep. Purif. Technol., 298 (2022) 121448, doi: 10.1016/j.seppur.2022.121448.
  6. N. Nemestóthy, P. Bakonyi, P. Lajtai-Szabó, K. Bélafi-Bakó, The impact of various natural gas contaminant exposures on CO2/CH4 separation by a polyimide membrane, Membranes, 10 (2020) 324, doi: 10.3390/membranes10110324.
  7. M.Z. Ahmad, T.A. Peters, N.M. Konnertz, T. Visser, C. Téllez, J. Coronas, V. Fila, W.M. de Vos, N.E. Benes,
    High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes, Sep. Purif. Technol., 230 (2020) 115858, doi: 10.1016/j. seppur.2019.115858.
  8. E.S. Miandoab, S.E. Kentish, C.A. Scholes, Modelling competitive sorption and plasticization of glassy polymeric membranes used in biogas upgrading, J. Membr. Sci., 617 (2021) 118643, doi: 10.1016/j.memsci.2020.118643.
  9. N. Saini, K. Awasthi, Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources, Sep. Purif. Technol., 282 (2022) 120029, doi: 10.1016/j.seppur.2021.120029.
  10. N. Abdullah, M.A. Rahman, M.H.D. Othman, J. Jaafar, A.F. Ismail, Membranes and Membrane Processes: Fundamentals, A. Basile, S. Mozia, R. Molinari, Eds., Current Trends and Future Developments on (Bio-) Membranes: Photocatalytic Membranes and Photocatalytic Membrane Reactors, Elsevier Inc., Amsterdam, Netherlands, 2018, pp. 45–70.
  11. B. Zornoza, C. Casado, A. Navajas, Advances in Hydrogen Separation and Purification with Membrane Technology, L.M. Gandia, G. Arzamendi, P.M. Diéguez, Renewable Hydrogen Technologies Production, Purification, Storage, Applications and Safety, Amsterdam, Netherlands, 2013, pp. 245–268.
  12. H.T. Lu, W. Li, E.S. Miandoab, S. Kanehashi, G. Hu, The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review, Front. Chem. Sci. Eng., 15 (2021) 464–482.
  13. A.J. Brown, N.A. Brunelli, K. Eum, F. Rashidi, J.R. Johnson, W.J. Koros, C.W. Jones, S. Nair, Interfacial microfluidic processing of metal-organic framework hollow fiber membranes, Science, 345 (2014) 72–75.
  14. F. Kadirkhan, P.S. Goh, A.F. Ismail, W.N.F.W. Mustapa, M.H.M. Halim, W.K. Soh, S.Y. Yeo, Recent advances of polymeric membranes in tackling plasticization and aging for practical industrial CO2/CH4 applications —
    a review, Membranes, 12 (2022) 71, doi: 10.3390/membranes12010071.
  15. G. Li, W. Kujawski, R. Válek, S. Koter, A review - the development of hollow fibre membranes for gas separation processes, Int. J. Greenhouse Gas Control, 104 (2021) 103195, doi: 10.1016/j.ijggc.2020.103195.
  16. D. Polak, M. Szwast, Analysis of the influence of process parameters on the properties of homogeneous and heterogeneous membranes for gas separation, Membranes, 12 (2022) 1016, doi: 10.3390/membranes12101016.
  17. D. Polak, M. Szwast, Material and process tests of heterogeneous membranes containing ZIF-8, SiO2 and POSS-Ph, Materials, 15 (2022) 6455, doi: 10.3390/ma15186455.
  18. https://www.airproducts.com.pl/supply-modes/prismmembranes/biogas-upgrading (Access: 05.11.2020).
  19. R.W. Baker, B.T. Low, Gas separation membrane materials: a perspective, Macromolecules, 47 (2014) 6999–7013.
  20. A. Janusz-Cygan, J. Jaschik, M. Tańczyk, Upgrading biogas from small agricultural sources into biomethane by membrane separation, Membranes, 11 (2021) 938, doi: 10.3390/membranes11120938.
  21. http://archiwum.ciop.pl/zasoby/05032011.pdf (Access: 09.03.2023).
  22. G. Wiciak, A. Janusz-Cygan, K. Janusz-Szymańska, M. Tańczyk, Determination of the effectiveness of commercial polymeric membranes for carbon dioxide separation, Desal. Water Treat., 243 (2021) 107–115.
  23. Y. Yampolskii, I. Pinnau, B.D. Freeman, Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons, Chichester, 2006.
  24. A. Wolińska-Grabczyk, A. Jankowski, Charakterystyka membran polimerowych do separacji płynów, Membrany – teoria i praktyka, Zeszyt IV, 30–58, Wydawnictwo Naukowe Uniwersytetu M. Kopernika, Toruń, 2014.
  25. A. Narębska, Membrany i membranowe techniki rozdziału, Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń, 1997.
  26. X. Duthie, S. Kentish, C. Powell, K. Nagai, G. Qiao, G. Stevens, Operating temperature effects on the plasticization of polyimide gas separation membranes, J. Membr. Sci., 294 (2007) 40–49.
  27. C. Scholes, G. Chen, G. Stevens, S. Kentish, Plasticization of ultra-thin polysulfone membranes by carbon dioxide, J. Membr. Sci., 346 (2010) 208–214.
  28. J. Adewole, A. Ahmad, S. Ismail, C. Leo, Current challenges in membrane separation of CO2 from natural gas: a review, Int. J. Greenhouse Gas Control, 17 (2013) 46–65.
  29. N. Li, A. Fane, W. Ho, T. Matsuura, Advanced Membrane Technology and Applications, John Wiley & Sons, New Jersey, 2008.
  30. P. Favvas, F. Katsaros, S. Papageorgiou, A. Sapalidis, A. Mitropoulos, A review of the latest development of polyimide-based membranes for CO2 separations, React. Funct. Polym., 120 (2017) 104–130.
  31. https://ube.es/products/biogas-upgrading-biomethane-co2-separator (Access: 09.03.2023).
  32. R. Baker, Membrane Technology and Applications, John Wiley & Sons, Chichester, 2004.