References
- https://powietrze.gios.gov.pl/pjp/publications/card/3077
(Access: 09.03.2023).
- https://sip.lex.pl/akty-prawne/dzienniki-UE/dyrektywa-2010-75-ue-w-sprawie-emisji-przemyslowych-zintegrowane-67999082 (Access: 09.03.2023).
- M. Lou, J.L. Bao, L. Zhou, G.N. Naidu, H. Robatjazi, A.I. Bayles,
H.O. Everitt, P. Nordlander, E.A. Carter, N.J. Halas, Direct
H2S decomposition by plasmonic photocatalysis: efficient
remediation plus sustainable hydrogen production, ACS
Energy Lett., 7 (2022) 3666–3674.
- M.K. Suleman, K.K. Lau, Y.F. Yeong, Plasticization and swelling
in polymeric membranes in CO2 removal from natural gas,
Chem. Eng. Technol., 39 (2016) 1604–1616.
- A. Pudi, M. Rezaei, V. Signorini, M.P. Andersson, M.G. Baschetti,
S.S. Mansouri, Hydrogen sulfide capture and removal
technologies: a comprehensive review of recent developments
and emerging trends, Sep. Purif. Technol., 298 (2022) 121448,
doi: 10.1016/j.seppur.2022.121448.
- N. Nemestóthy, P. Bakonyi, P. Lajtai-Szabó, K. Bélafi-Bakó,
The impact of various natural gas contaminant exposures on
CO2/CH4 separation by a polyimide membrane, Membranes,
10 (2020) 324, doi: 10.3390/membranes10110324.
- M.Z. Ahmad, T.A. Peters, N.M. Konnertz, T. Visser, C. Téllez,
J. Coronas, V. Fila, W.M. de Vos, N.E. Benes,
High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes,
Sep. Purif. Technol., 230 (2020) 115858, doi: 10.1016/j.
seppur.2019.115858.
- E.S. Miandoab, S.E. Kentish, C.A. Scholes, Modelling
competitive sorption and plasticization of glassy polymeric
membranes used in biogas upgrading, J. Membr. Sci., 617 (2021)
118643, doi: 10.1016/j.memsci.2020.118643.
- N. Saini, K. Awasthi, Insights into the progress of polymeric
nano-composite membranes for hydrogen separation and
purification in the direction of sustainable energy resources,
Sep. Purif. Technol., 282 (2022) 120029, doi: 10.1016/j.seppur.2021.120029.
- N. Abdullah, M.A. Rahman, M.H.D. Othman, J. Jaafar,
A.F. Ismail, Membranes and Membrane Processes: Fundamentals,
A. Basile, S. Mozia, R. Molinari, Eds., Current Trends
and Future Developments on (Bio-) Membranes: Photocatalytic
Membranes and Photocatalytic Membrane Reactors,
Elsevier Inc., Amsterdam, Netherlands, 2018, pp. 45–70.
- B. Zornoza, C. Casado, A. Navajas, Advances in Hydrogen
Separation and Purification with Membrane Technology,
L.M. Gandia, G. Arzamendi, P.M. Diéguez, Renewable Hydrogen
Technologies Production, Purification, Storage, Applications
and Safety, Amsterdam, Netherlands, 2013, pp. 245–268.
- H.T. Lu, W. Li, E.S. Miandoab, S. Kanehashi, G. Hu, The
opportunity of membrane technology for hydrogen
purification in the power to hydrogen (P2H) roadmap: a review,
Front. Chem. Sci. Eng., 15 (2021) 464–482.
- A.J. Brown, N.A. Brunelli, K. Eum, F. Rashidi, J.R. Johnson,
W.J. Koros, C.W. Jones, S. Nair, Interfacial microfluidic
processing of metal-organic framework hollow fiber
membranes, Science, 345 (2014) 72–75.
- F. Kadirkhan, P.S. Goh, A.F. Ismail, W.N.F.W. Mustapa,
M.H.M. Halim, W.K. Soh, S.Y. Yeo, Recent advances of polymeric
membranes in tackling plasticization and aging for practical
industrial CO2/CH4 applications —
a review, Membranes,
12 (2022) 71, doi: 10.3390/membranes12010071.
- G. Li, W. Kujawski, R. Válek, S. Koter, A review - the development
of hollow fibre membranes for gas separation processes, Int.
J. Greenhouse Gas Control, 104 (2021) 103195, doi: 10.1016/j.ijggc.2020.103195.
- D. Polak, M. Szwast, Analysis of the influence of process
parameters on the properties of homogeneous and
heterogeneous membranes for gas separation, Membranes,
12 (2022) 1016, doi: 10.3390/membranes12101016.
- D. Polak, M. Szwast, Material and process tests of heterogeneous
membranes containing ZIF-8, SiO2 and POSS-Ph,
Materials, 15 (2022) 6455, doi: 10.3390/ma15186455.
- https://www.airproducts.com.pl/supply-modes/prismmembranes/biogas-upgrading (Access: 05.11.2020).
- R.W. Baker, B.T. Low, Gas separation membrane materials: a
perspective, Macromolecules, 47 (2014) 6999–7013.
- A. Janusz-Cygan, J. Jaschik, M. Tańczyk, Upgrading
biogas from small agricultural sources into biomethane by
membrane separation, Membranes, 11 (2021) 938, doi: 10.3390/membranes11120938.
- http://archiwum.ciop.pl/zasoby/05032011.pdf (Access:
09.03.2023).
- G. Wiciak, A. Janusz-Cygan, K. Janusz-Szymańska, M. Tańczyk,
Determination of the effectiveness of commercial polymeric
membranes for carbon dioxide separation, Desal. Water Treat.,
243 (2021) 107–115.
- Y. Yampolskii, I. Pinnau, B.D. Freeman, Materials Science of
Membranes for Gas and Vapor Separation, John Wiley & Sons,
Chichester, 2006.
- A. Wolińska-Grabczyk, A. Jankowski, Charakterystyka
membran polimerowych do separacji płynów, Membrany –
teoria i praktyka, Zeszyt IV, 30–58, Wydawnictwo Naukowe
Uniwersytetu M. Kopernika, Toruń, 2014.
- A. Narębska, Membrany i membranowe techniki rozdziału,
Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń, 1997.
- X. Duthie, S. Kentish, C. Powell, K. Nagai, G. Qiao, G. Stevens,
Operating temperature effects on the plasticization of
polyimide gas separation membranes, J. Membr. Sci.,
294 (2007) 40–49.
- C. Scholes, G. Chen, G. Stevens, S. Kentish, Plasticization of
ultra-thin polysulfone membranes by carbon dioxide, J. Membr.
Sci., 346 (2010) 208–214.
- J. Adewole, A. Ahmad, S. Ismail, C. Leo, Current challenges
in membrane separation of CO2 from natural gas: a review,
Int. J. Greenhouse Gas Control, 17 (2013) 46–65.
- N. Li, A. Fane, W. Ho, T. Matsuura, Advanced Membrane
Technology and Applications, John Wiley & Sons, New Jersey,
2008.
- P. Favvas, F. Katsaros, S. Papageorgiou, A. Sapalidis,
A. Mitropoulos, A review of the latest development of
polyimide-based membranes for CO2 separations, React. Funct.
Polym., 120 (2017) 104–130.
- https://ube.es/products/biogas-upgrading-biomethane-co2-separator (Access: 09.03.2023).
- R. Baker, Membrane Technology and Applications, John Wiley
& Sons, Chichester, 2004.