References
- A. Pal, Y. He, M. Jekel, M. Reinhard, K. Yew-Hoong Gin,
Emerging contaminants of public health significance as
water quality indicator compounds in the urban water cycle,
Environ. Int., 71 (2014) 46–62.
- B. Halling-Sørensen, S. Nors Nielsen, P.F. Lanzky, F. Ingerslev,
H.C. Holten Lützhøft, S.E. Jørgensen, Occurrence, fate and
effects of pharmaceutical substances in the environment - a
review, Chemosphere, 36 (1998) 357–393.
- J.L. Martinez, Environmental pollution by antibiotics and by
antibiotic resistance determinants, Environ. Pollut., 157 (2009)
2893–2902.
- K.M.S. Ana, J. Madriaga, M.P. Espino, β-Lactam antibiotics
and antibiotic resistance in Asian lakes and rivers: an overview
of contamination, sources and detection methods, Environ.
Pollut., 275 (2021) 116624, doi: 10.1016/j.envpol.2021.116624.
- S. Moles, S. Gozzo, M.P. Ormad, R. Mosteo, J. Gómez, F. Laborda,
J. Szpunar, Long-term study of antibiotic presence in Ebro River
basin (Spain): identification of the emission sources, Water,
14 (2022) 1033, doi: 10.3390/w14071033.
- L.A Dagher, J. Hassan, S. Kharroubi, H. Jaafar, I.I. Kassem,
Nationwide assessment of water quality in rivers across
Lebanon by quantifying fecal indicators densities and profiling
antibiotic resistance of Escherichia coli, Antibiotics, 10 (2021) 883,
doi: 10.3390/antibiotics10070883.
- F.R.B. Twinomucunguzi, P.M. Nyenje, S. Semiyaga,
P. Kebirungi, R.N. Kulabako, F. Kansiime, Antibiotics in
shallow groundwater underlying urban informal settlements in
developing countries: influence of on-site sanitation practices
and risk assessment, Urban Water J., 20 (2023) 1731–1743.
- E. Sanganyado, G. Willis, Antibiotic resistance in drinking
water systems: occurrence, removal, and human health risks,
Sci. Total Environ., 669 (2019) 785–797.
- K.P.M. Licona, L.R. de O. Geaquinto, J.V. Nicolini,
N.G. Figueiredo, S.C. Chiapetta, A.C. Habert, L. Yokoyama,
Assessing potential of nanofiltration and reverse osmosis for
removal of toxic pharmaceuticals from water, J. Water Process
Eng., 25 (2018) 195–204.
- M.A. Zazouli, H. Susanto, S. Nasseri, M. Ulbricht, Influences
of solution chemistry and polymeric natural organic matter
on the removal of aquatic pharmaceutical residuals by
nanofiltration, Water Res., 43 (2009) 3270–3280.
- F. Javier Benitez, J.L. Acero, F.J. Real, G. Roldán, E. Rodriguez,
Ultrafiltration and nanofiltration membranes applied to
the removal of the pharmaceuticals amoxicillin, naproxen,
metoprolol and phenacetin from water, J. Chem. Technol.
Biotechnol., 86 (2011) 858–866.
- A.M. Urtiaga, G. Pérez, R. Ibáñez, I. Ortiz, Removal of
pharmaceuticals from a WWTP secondary effluent by
ultrafiltration/reverse osmosis followed by electrochemical
oxidation of the RO concentrate, Desalination, 331 (2013)
26–34.
- K. Ikehata, N.J. Naghashkar, M.G. El-Din, Degradation of
aqueous pharmaceuticals by ozonation and advanced oxidation
processes: a review, Ozone: Sci. Eng., 28 (2006) 353–414.
- D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation
process-mediated removal of pharmaceuticals from water: a
review, J. Environ. Manage., 219 (2018) 189–207.
- C. Zwiener, F.H. Frimmel, Oxidative treatment of
pharmaceuticals in water, Water Res., 34 (2000) 1881–1885.
- P.K. Pandis, C. Kalogirou, E. Kanellou, C. Vaitsis, M.G. Savvidou,
G. Sourkouni, A.A. Zorpas, C. Argirusis, Key points of advanced
oxidation processes (AOPs) for wastewater, organic pollutants
and pharmaceutical waste treatment: a mini review, ChemEng,
6 (2022) 8, doi: 10.3390/chemengineering6010008.
- N. Delgado, A. Capparelli, A. Navarro, D. Marino, Pharmaceutical
emerging pollutants removal from water using
powdered activated carbon: study of kinetics and adsorption
equilibrium, J. Environ. Manage., 236 (2019) 301–308.
- S. Álvarez-Torrellas, J.A. Peres, V. Gil-Álvarez, G. Ovejero,
J. García, Effective adsorption of non-biodegradable
pharmaceuticals from hospital wastewater with different
carbon materials, Chem. Eng. J., 320 (2017) 319–329.
- M. Zhang, J. Shen, Y. Zhong, T. Ding, P.D. Dissanayake,
Y. Yang, Y.F. Tsang, Y.S. Ok, Sorption of pharmaceuticals and
personal care products (PPCPs) from water and wastewater by
carbonaceous materials: a review, Crit. Rev. Env. Sci. Technol.,
52 (2022) 727–766.
- T.-H. Le, C. Ng, N.H. Tran, H. Chen, K. Yew-Hoong Gin,
Removal of antibiotic residues, antibiotic resistant bacteria
and antibiotic resistance genes in municipal wastewater by
membrane bioreactor systems, Water Res., 145 (2018) 498–508.
- A. Seid-Mohammadi, G. Asgarai, Z. Ghorbanian, A. Dargahi,
The removal of cephalexin antibiotic in aqueous solutions
by ultrasonic waves/hydrogen peroxide/nickel oxide nanoparticles
(US/H2O2/NiO) hybrid process, Sep. Sci. Technol.,
55 (2020) 1558–1568.
- S. Wohlmuth da Silva, A.N.A. Heberle, A.P. Santos,
M.A.S. Rodrigues, V. Pérez-Herranz, A.M. Bernardes,
Antibiotics mineralization by electrochemical and UV-based
hybrid processes: evaluation of the synergistic effect,
Environ. Technol., 40 (2019) 3456–3466.
- D. Polak, I. Zielińska, M. Szwast, I. Kogut, A. Małolepszy,
Modification of ceramic membranes with carbon compounds
for pharmaceutical substances removal from water in a
filtration—adsorption system, Membranes, 11 (2021) 481,
doi: 10.3390/membranes11070481.
- S.O. Ganiyu, E.D. van Hullebusch, M. Cretin, G. Esposito,
M.A. Oturan, Coupling of membrane filtration and advanced
oxidation processes for removal of pharmaceutical residues: a
critical review, Sep. Purif. Technol., 156 (2015) 891–914.
- I. Kogut, F. Armbruster, D. Polak, S. Kaur, S. Hussy, T. Thiem,
A. Gerhardts, M. Szwast, Antibacterial, antifungal, and
antibiotic adsorption properties of graphene-modified nonwoven
materials for application in wastewater treatment plants,
Processes, 10 (2022) 2051, doi: 10.3390/pr10102051.
- D. Polak, I. Tonecka, W. Fabianowski, M. Szwast, Development
of graphene oxide-coated membranes to support the process
of removing pharmacological agents from water, Desal. Water
Treat., 214 (2021) 49–55.
- L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of
pharmaceutical pollutants onto graphene nanoplatelets,
Chem. Eng. J., 248 (2014) 191–199.
- M. Stor, K. Czelej, A. Krasiński, L. Gradoń, Exceptional
sorption of heavy metals from natural water by halloysite
particles: a new prospect of highly efficient water remediation,
Nanomaterials, 13 (2023) 1162, doi: 10.3390/nano13071162.
- E. Nyankson, R.V. Kumar, Removal of water-soluble dyes
and pharmaceutical wastes by combining the photocatalytic
properties of Ag3PO4 with the adsorption properties of
halloysite nanotubes, Mater. Today Adv., 4 (2019) 100025,
doi: 10.1016/j.mtadv.2019.100025.
- I. Zielińska, D. Polak, M. Szwast, Analysis of the adsorption
of selected pharmaceuticals on a composite material PEBAX/GO, J. Water Process Eng., 44 (2021) 102272, doi: 10.1016/j.jwpe.2021.102272.
- M.J.F. Calvete, G. Piccirillo, C.S. Vinagreiro, M.M. Pereira,
Hybrid materials for heterogeneous photocatalytic degradation
of antibiotics, Coord. Chem. Rev., 395 (2019) 63–85.
- T. Velempini, E. Prabakaran, K. Pillay, Recent developments
in the use of metal oxides for photocatalytic degradation of
pharmaceutical pollutants in water—a review, Mater. Today
Chem., 19 (2021) 100380, doi: 10.1016/j.mtchem.2020.100380.
- S.K. Fanourakis, J. Peña-Bahamonde, P.C. Bandara,
D.F. Rodrigues, Nano-based adsorbent and photocatalyst
use for pharmaceutical contaminant removal during indirect
potable water reuse, npj Clean Water, 3 (2020) 1, doi: 10.1038/s41545-019-0048-8.
- R. Liu, Y. Guan, L. Chen, B. Lian, Adsorption and desorption
characteristics of Cd2+ and Pb2+ by micro and nano-sized
biogenic CaCO3, Front. Microbiol., 9 (2018) 41, doi: 10.3389/fmicb.2018.00041.
- M. Fathy, M.A. Zayed, Y.M. Moustafa, Synthesis and
applications of CaCO3/HPC core–shell composite subject to
heavy metals adsorption processes, Heliyon, 5 (2019) e02215,
doi: 10.1016/j.heliyon.2019.e02215.
- X. Ma, L. Li, L. Yang, C. Su, K. Wang, S. Yuan, J. Zhou, Adsorption
of heavy metal ions using hierarchical CaCO3–maltose meso/macroporous hybrid materials: adsorption isotherms and
kinetic studies, J. Hazard. Mater., 209 (2012) 467–477.
- D. Jahani, A. Nazari, J. Ghourbanpour, A. Ameli, Polyvinyl
alcohol/calcium carbonate nanocomposites as efficient and
cost-effective cationic dye adsorbents, Polymers, 12 (2020) 2179,
doi: 10.3390/polym12102179.
- S.F. Hassan, S. Kamireddy, M.P. Yutkin, C.J. Radke, T.W. Patzek,
Adsorption of charged surfactants onto calcium carbonate,
IOR 2019–20th European Symposium on Improved Oil
Recovery, 1 (2019) 1–19.
- K.-U. Goss, R.P. Schwarzenbach, Adsorption of a diverse set
of organic vapors on quartz, CaCO3, and α-Al2O3 at different
relative humidities, J. Colloid Interface Sci., 252 (2002) 31–41.
- J. Plank, G. Bassioni, Adsorption of carboxylate anions on a
CaCO3 surface, Zeitschrift für Naturforschung B, 62 (2007)
1277–1284.
- J.H. Lew, O.K. Matar, E.A. Müller, M.T.M. Maung, P.F. Luckham,
Adsorption of hydrolysed polyacrylamide onto calcium
carbonate, Polymers, 14 (2022) 405, doi: 10.3390/polym14030405.
- B.J. Chun, S.G. Lee, J.I. Choi, S.S. Jang, Adsorption of carboxylate
on calcium carbonate (1014) surface: molecular simulation
approach, Colloids Surf., A, 474 (2015) 9–17.
- L. Zhou, T. Peng, H. Sun, X. Guo, D. Fu, The characterization
and amoxicillin adsorption activity of mesopore CaCO3
microparticles prepared using rape flower pollen, Minerals,
9 (2019) 254, doi: 10.3390/min9040254.
- M. Ramakrishna, S. Valiyaveettil, Co-precipitation with
calcium carbonate – a fast and nontoxic method for removal
of nanopollutants from water?, RSC Adv., 5 (2015) 11023–11028.
- R.B.S.M.N. Mydin, I.N.M. Zahidi, N.N. Ishak, N.S.S.N. Ghazali,
S. Moshawih, S. Siddiquee, Potential of calcium carbonate
nanoparticles for therapeutic applications, Malays. J. Med.
Health Sci., 14 (2018) 201–206.
- M. Szwast, D. Polak, W. Arciszewska, I. Zielińska, Novel PVDFPEG-CaCO3 membranes to achieve the objectives of the water
circular economy by removing pharmaceuticals from the
aquatic environment, Membranes, 13 (2023) 44, doi: 10.3390/membranes13010044.
- K. Kędra-Królik, P. Gierycz, J.J. Bucki, Controlled precipitation
of CaCO3 sub-micro crystals of well-defined structure in a
multiphase system, Arch. Metall. Mater., 51 (2006) 635–639.
- X. Peng, J. Cao, B. Xie, M. Duan, J. Zhao, Evaluation of
degradation behavior over tetracycline hydrochloride by
microbial electrochemical technology: performance, kinetics,
and microbial communities, Ecotoxicol. Environ. Saf.,
188 (2020) 109869, doi: 10.1016/j.ecoenv.2019.109869.
- H. Park, Y.-K. Choung, Degradation of antibiotics (tetracycline,
sulfathiazole, ampicillin) using enzymes of glutathion
S-transferase, Hum. Ecol. Risk Assess.: Int. J., 13 (2007)
1147–1155.
- F. Wei, Q. Ren, H. Zhang, L. Yang, H. Chen, Z. Liang, D. Chen,
Removal of tetracycline hydrochloride from wastewater by
Zr/Fe-MOFs/GO composites, RSC Adv., 11 (2021) 9977–9984.
- M. Conde-Cid, A. Núñez-Delgado, M.J. Fernández-Sanjurjo,
E. Álvarez-Rodríguez, D. Fernández-Calviño, M. Arias-Estévez, Tetracycline and sulfonamide antibiotics in soils:
presence, fate and environmental risks, Processes, 8 (2020) 1479,
doi: 10.3390/pr8111479.
- S. Hu, Y. Zhang, G. Shen, H. Zhang, Z. Yuan, W. Zhang,
Adsorption/desorption behavior and mechanisms of sulfadiazine
and sulfamethoxazole in agricultural soil systems,
Soil Tillage Res., 186 (2019) 233–241.
- S.T. Kurwadkar, C.D. Adams, M.T. Meyer, D.W. Kolpin, Effects
of sorbate speciation on sorption of selected sulfonamides in
three loamy soils, J. Agric. Food Chem., 55 (2007) 1370–1376.
- A.B.A. Boxall, P. Blackwell, R. Cavallo, P. Kay, J. Tolls, The
sorption and transport of a sulphonamide antibiotic in soil
systems, Toxicol. Lett., 131 (2002) 19–28.
- L. Zhang, Y. Wang, S.W. Jin, Q.Z. Lu, J. Ji, Adsorption isotherm,
kinetic and mechanism of expanded graphite for sulfadiazine
antibiotics removal from aqueous solutions, Environ. Technol.,
38 (2017) 2629–2638.
- L. Ji, W. Chen, J. Bi, S. Zheng, Z. Xu, D. Zhu, P.J. Alvarez,
Adsorption of tetracycline on single-walled and multi-walled
carbon nanotubes as affected by aqueous solution chemistry,
Environ. Toxicol. Chem., 29 (2010) 2713–2719.
- Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su,
Adsorption and removal of tetracycline antibiotics from
aqueous solution by graphene oxide, J. Colloid Interface Sci.,
368 (2012) 540–546.
- G. Ersan, O.G. Apul, F. Perreault, T. Karanfil, Adsorption
of organic contaminants by graphene nanosheets: a review,
Water Res., 126 (2017) 385–398.
- M.H. Derkani, A.J. Fletcher, M. Fedorov, W. Abdallah, B. Sauerer,
J. Anderson, Z.J. Zhang, Mechanisms of surface charge
modification of carbonates in aqueous electrolyte solutions,
Colloids Interfaces, 3 (2019) 62, doi: 10.3390/colloids3040062.
- M.O. Schmitt, S. Schneider, Spectroscopic investigation of
complexation between various tetracyclines and Mg2+ or Ca2+,
PhysChemComm, 3 (2000) 42–55.
- E.J. Ozumchelouei, A.H. Hamidian, Y. Zhang, M. Yang,
Physicochemical properties of antibiotics: a review with an
emphasis on detection in the aquatic environment, Water
Environ. Res., 92 (2020) 177–188.
- S. Liu, W.-H. Xu, Y.-G. Liu, X.-F. Tan, G.-M. Zeng, X. Li,
J. Liang, Z. Zhou, Z.-L. Yan, X.-X. Cai, Facile synthesis of
Cu(II) impregnated biochar with enhanced adsorption activity
for the removal of doxycycline hydrochloride from water,
Sci. Total Environ., 592 (2017) 546–553.
- S. Paria, K.C. Khilar, A review on experimental studies of
surfactant adsorption at the hydrophilic solid–water interface,
Adv. Colloid Interface Sci., 110 (2004) 75–95.