References

  1. Plastic Europe, Plastics – Facts 2022, Market Data as of October 2022. Available at https://plasticseurope.org/pl (Available 11.07.2023).
  2. A.A. Arpia, W.-H. Chen, A.T. Ubando, S.R. Naqvi, A.B. Culaba, Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: a state-of-the-art review, J. Hazard. Mater., 418 (2021) 126381, doi: 10.1016/j.jhazmat.2021.126381.
  3. Y.L. Cheng, J.-G. Kim, H.-B. Kim, J.H. Choi, Y.F. Tsang, K. Baek, Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: a review, Chem. Eng. J., 410 (2021) 128381, doi: 10.1016/j.cej.2020.128381.
  4. M. Bodzek, A. Pohl, Removal of microplastics in unit processes used in water and wastewater treatment: a review, Arch. Environ. Prot., 48 (2022) 102–128.
  5. M. Bodzek, A. Pohl, Possibilities of removing microplastics from the aquatic environment using, membrane processes, Desal. Water Treat., 288 (2023) 104–120.
  6. R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W. John, D. Mcgonigle, A.E. Russell, Lost at sea: where is all the plastic?, Science, 304 (2004) 838, doi: 10.1126/science.1094559.
  7. M. Padervand, E. Lichtfouse, D. Robert, C. Wang, Removal of microplastics from the environment. A review, Environ. Chem. Lett., 18 (2020) 807–828.
  8. J. Shi, Y. Dong, Y. Shi, T. Yin, W. He, T. An, Y. Tang, X. Hou, S. Chong, D. Chen, K. Qin, H. Lin, Groundwater antibiotics and microplastics in a drinking-water source area, northern China: occurrence, spatial distribution, risk assessment, and correlation, Environ. Res., 210 (2022) 112855, doi: 10.1016/j.envres.2022.112855.
  9. S.L. Wright, J. Ulke, A. Font, K.L.A. Chan, F.J. Kelly, Atmospheric microplastic deposition in an urban environment and an evaluation of transport, Environ. Int., 136 (2020) 105411, doi: 10.1016/j.envint.2019.105411.
  10. J. Zhao, W. Ran, J. Teng, Y. Liu, H. Liu, X. Yin, R. Cao, Q. Wang, Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China, Sci. Total Environ., 640–641 (2018) 637–645.
  11. S. Sharma, S. Chatterjee, Microplastic pollution, a threat to marine ecosystem and human health: a short review, Environ. Sci. Pollut. Res. Int., 24 (2017) 21530–21547.
  12. S. Acarer, Microplastics in wastewater treatment plants: sources, properties, removal efficiency, removal mechanisms, and interactions with pollutants, Water Sci. Technol., 87 (2023) 685–710.
  13. P.U. Iyare, S.K. Ouki, T. Bond, Microplastics removal in wastewater treatment plants: a critical review, Environ. Sci. Water Res. Technol., 6 (2020) 2664–2675.
  14. I. Ali, Q. Cheng, T. Ding, Q. Yiguang, Z. Yuechao, H. Sun, C. Peng, I. Naz, J. Li, J. Liu, Micro- and nanoplastics in the environment: occurrence, detection, characterization and toxicity – a critical review, J. Cleaner Prod., 313 (2021) 127863, doi: 10.1016/j.jclepro.2021.127863.
  15. L. Gao, D. Fu, J. Zhao, W. Wu, Z. Wang, Y. Su, L. Peng, Microplastics aged in various environmental media exhibited strong sorption to heavy metals in seawater, Mar. Pollut. Bull., 169 (2021) 112480, doi: 10.1016/j.marpolbul.2021.112480.
  16. M. Munoz, D. Ortiz, J. Nieto-Sandoval, Z.M. de Pedro, J.A. Casas, Adsorption of micropollutants onto realistic microplastics: role of microplastic nature, size, age, and NOM fouling, Chemosphere, 283 (2021) 131085, doi: 10.1016/j.chemosphere.2021.131085.
  17. W.H. Abuwatfa, D. Al-Muqbel, A. Al-Othman, N. Halalsheh, M. Tawalbeh, Insights into the removal of microplastics from water using biochar in the era of COVID-19: a mini review, Case Stud. Chem. Environ. Eng., 4 (2021) 100151, doi: 10.1016/j.cscee.2021.100151.
  18. L.G.A. Barboza, S.C. Cunha, C. Monteiro, J.O. Fernandes, L. Guilhermino, Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers, J. Hazard. Mater., 393 (2020) 122419, doi: 10.1016/j.jhazmat.2020.122419.
  19. A. Rahman, A.Y. Sarkar, P. Om, G. Achari, J. Slobodnik, Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review, Sci. Total Environ., 757 (2020) 143872, doi: 10.1016/j.scitotenv.2020.143872.
  20. Q. Zhang, E. Xu, J. Li, Q. Chen, L. Ma, E. Zeng, H. Shi, A review of microplastics in table salt, drinking water, and air: direct human exposure, Environ. Sci. Technol., 54 (2020) 3740–3751.
  21. S.A. Mason, V.G. Welch, J. Neratko, Synthetic polymer contamination in bottled water, Front. Chem., 6 (2018) 407, doi: 10.3389/fchem.2018.00407.
  22. P. Schwabl, S. Koppel, P. Konigshofer, T. Bucsics, M. Trauner, T. Reiberger, B. Liebmann, Detection of various microplastics in human stool: a prospective case series, Ann. Intern. Med., 171 (2019) 453–457.
  23. N. Badola, A. Bahuguna, Y. Sasson, J.S. Chauhan, Microplastics removal strategies: a step toward finding the solution, Front. Environ. Sci. Eng., 16 (2022) 7, doi: 10.1007/s11783-021-1441-3.
  24. A.L. Patrício Silva, New frontiers in remediation of (micro) plastics, Curr. Opin. Green Sustainable Chem., 28 (2021) 100443, doi: 10.1016/j.cogsc.2020.100443.
  25. N.H.H. Hairom, C.F. Soon, R.M.S.R. Mohamed, M. Morsin, N. Zainal, N. Nayan, C.Z. Zulkifli, N.H. Harun, A review of nanotechnological applications to detect and control surface water pollution, Environ. Technol. Innovation, 24 (2021) 102032, doi: 10.1016/j.eti.2021.102032.
  26. Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, Nanomaterials enabled water and wastewater treatment, NanoImpact, 3–4 (2016) 22–39.
  27. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for next generation of semipermeable membranes, Crit. Rev. Environ. Sci. Technol., 50 (2020) 1515–1579.
  28. J. Scaria, P.V. Nidheesh, M.S. Kumar, Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment, J. Environ. Manage., 259 (2020) 110011, doi: 10.1016/j.jenvman.2019.110011.
  29. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, The application of nanomaterial adsorbents for the removal of impurities from water and wastewaters: a review, Desal. Water Treat., 185 (2020) 1–26.
  30. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, The application of nanotechnology and nanomaterials in water and wastewater treatment. membranes, photocatalysis and disinfection, Desal. Water Treat., 186 (2020) 88–106.
  31. M. Sajid, I. Ihsanullah, M.T. Khan, N. Baig, Nanomaterials-based adsorbents for remediation of microplastics and nanoplastics in aqueous media: a review, Sep. Purif. Technol., 305 (2023) 122453, doi: 10.1016/j.seppur.2022.122453.
  32. O.M. Rodríguez-Narvaez, A. Goonetilleke, L. Perez, E.R. Bandala, Engineered technologies for the separation and degradation of microplastics in water: a review, Chem. Eng. J., 414 (2021) 128692, doi: 10.1016/j.cej.2021.128692.
  33. R. Ahmed, A.K. Hamid, S.A. Krebsbach, J. He, D. Wang, Critical review of microplastics removal from the environment, Chemosphere, 293 (2022) 133557, doi: 10.1016/j.chemosphere.2022.133557.
  34. L. Vuori, M. Ollikainen, How to remove microplastics in wastewater? A cost-effectiveness analysis, Ecol. Econ., 192 (2022) 107246, doi: 10.1016/j.ecolecon.2021.107246.
  35. E.O. Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review, Membranes, 10 (2020) 89, doi: 10.3390/membranes10050089.
  36. M. Enfrin, L.F. Dumée, J. Lee, Nano/microplastics in water and wastewater treatment processes – origin, impact and potential solutions, Water Res., 161 (2019) 621–638.
  37. M.B. Ahmed, Md.S. Rahman, J. Alom, M.D. Saif Hasan, M.A.H. Johir, M. Ibrahim H. Mondal, D.-Y. Lee, J. Park, J.L. Zhou, M.-H. Yoon, Microplastic particles in the aquatic environment: a systematic review, Sci. Total Environ., 775 (2021) 145793, doi: 10.1016/j.scitotenv.2021.145793.
  38. J.P. Harrison, M. Sapp, M. Schratzberger, A.M. Osborn, Interactions between microorganisms and marine microplastics: a call for research, Mar. Technol. Soc. J., 45 (2011) 12–20.
  39. I.V. Muralikrishna, V. Manickam, Wastewater Treatment Technologies. In Environmental Management, Elsevier Butterworth-Heinemann, Oxford, UK, 2017, pp. 249–293.
  40. M. Malankowska, C. Echaide-Gorriz, J. Coronas, Microplastics in marine environment – sources, classification, and potential remediation by membrane technology – a review, Environ. Sci. Water Res. Technol., 7 (2021) 243–258.
  41. W. Zhao, I.W. Chen, F. Huang, Toward large-scale water treatment using nanomaterials, Nano Today, 27 (2019) 11–27.
  42. P.S. Goh, H.S. Kang, A.F. Ismail, W.H. Khor, L.K. Quen, D. Higgins, Nanomaterials for microplastic remediation from aquatic environment: why nano matters?, Chemosphere, 299 (2022) 134418, doi: 10.1016/j.chemosphere.2022.134418.
  43. D.A. Fedosov, A.V. Smirnov, E.E. Knyazeva, I.I. Ivanova, Zeolite membranes: synthesis, properties, and application, Pet. Chem., 51 (2012) 657–667.
  44. M.R.S. Kebria, M. Jahanshahi, A. Rahimpour, SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions, Desalination, 367 (2015) 255–264.
  45. T. Tosco, P.M. Papini, C.C. Viggi, R. Sethi, Nanoscale zerovalent iron particles for groundwater remediation: a review, J. Cleaner Prod., 77 (2014) 10–21.
  46. P.F. Andrade, A.F. de Faria, S.R. Oliveira, M.A.Z. Arruda, M.D.C. Gonçalves, Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles, Water Res., 81 (2015) 333–342.
  47. M. Khajeh, S. Laurent, K. Dastafkan, Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media), Chem. Rev., 113 (2013) 7728–7768.
  48. G. Rashi, N. Kumar, S.S. Ray, Recent advances in carbon nanomaterial-based adsorbents for water purification, Coord. Chem. Rev., 405 (2020) 213111, doi: 10.1016/j.ccr.2019.213111.
  49. K. Ankit, A. Yadav, T.R. Raj, M.G. Keischgens, H. Rathore, I.E. Sarris, Carbon nanoparticles as sources for a cost-effective water purification method: a comprehensive review, Fluids, 5 (2020) 230, doi: 10.3390/fluids5040230.
  50. M. Bodzek, K. Konieczny A. Kwiecińska-Mydlak, New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment: critical review, Arch. Environ. Prot., 47 (2021) 3–27.
  51. A. Ahmad, K.A. El-Nour, R.A.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterization, Arabian J. Chem., 5 (2012) 1–23.
  52. H.-Y. Xu, L.-C. Wu, H. Zhao, L.-G. Jin, S.-Y. Qi, Synergic effect between adsorption and photocatalysis of metal-free g-C3N4 derived from different precursors, PLoS One, 10 (2015) e0142616, doi: 10.1371/journal.pone.0142616.
  53. P. Murugesan, J.A. Moses, C. Anandharamakrishnan, Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review, J. Mater. Sci., 54 (2019) 12206–12235.
  54. L. Madhura, S. Singh, S. Kanchi, M. Sabela, K. Bisetty, Nanotechnology based water quality management for wastewater treatment, Environ. Chem. Lett., 17 (2018) 65–121.
  55. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites –
    a review, Mater. Sci. Eng., A, 393 (2005) 1–11.
  56. X. Zhao, L. Lv, B.C. Pan, W.M. Zhang, S.J. Zhang, Q.X. Zhang, Polymer-supported nanocomposites for environmental application: a review, Chem. Eng. J., 170 (2011) 381–394.
  57. M. Ghorbani, O. Seyedin, M. Aghamohammadhassan, Adsorptive removal of lead(II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: a review, J. Environ. Manage., 254 (2020) 109814, doi: 10.1016/j.jenvman.2019.109814.
  58. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen, Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater, Bioresour. Technol., 214 (2016) 836–851.
  59. M. Sajid, I. Ihsanullah, M. Tariq Khan, N. Baig, Nanomaterialsbased adsorbents for remediation of microplastics and nanoplastics in aqueous media: a review, Sep. Purif. Technol., 305 (2023) 122453, doi: 10.1016/j.seppur.2022.122453.
  60. K. Jain, A.S. Patel, V.P. Pardhi, S.J.S. Flora, Nanotechnology in wastewater management: a new paradigm towards wastewater treatment, Molecules, 26 (2021) 1797, doi: 10.3390/molecules26061797.
  61. I. Ali, New generation adsorbents for water treatment, Chem. Rev., 112 (2012) 5073–5091.
  62. C. Sun, Z. Wang, L. Chen, F. Li, Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups, Chem. Eng. J., 393 (2020) 124796, doi: 10.1016/j.cej.2020.124796.
  63. M. Sajid, M. Asif, N. Baig, M. Kabeer, I. Ihsanullah, A.W. Mohammad, Carbon nanotubes-based adsorbents: properties, functionalization, interaction mechanisms, and applications in water purification, J. Water Process Eng., 47 (2022) 102815, doi: 10.1016/j.jwpe.2022.102815.
  64. O. Güler, N. Bagcı, A short review on mechanical properties of graphene reinforced metal matrix composites, J. Mater. Res. Technol., 9 (2020) 6808–6833.
  65. G. Peng, M. Xiang, W. Wang, Z. Su, H. Liu, Y. Mao, Y. Chen, P. Zhang, Engineering 3D graphene-like carbon-assembled layered double oxide for efficient microplastic removal in a wide pH range, J. Hazard. Mater., 433 (2022) 128672, doi: 10.1016/j.jhazmat.2022.128672.
  66. F. Yuan, L. Yue, H. Zhao, H. Wu, Study on the adsorption of polystyrene microplastics by three-dimensional reduced graphene oxide, Water Sci. Technol., 81 (2020) 2163–2175.
  67. Y. Tang, S. Zhang, Y. Su, D. Wu, Y. Zhao, B. Xie, Removal of microplastics from aqueous solutions by magnetic carbon nanotubes, Chem. Eng. J., 406 (2021) 126804, doi: 10.1016/j.cej.2020.126804.
  68. H. Zhao, X. Huang, L. Wang, X. Zhao, F. Yan, Y. Yang, G. Li, P. Gao, P. Ji, Removal of polystyrene nanoplastics from aqueous solutions using a novel magnetic material: adsorbability, mechanism, and reusability, Chem. Eng. J., 430 (2022) 133122, doi: 10.1016/j.cej.2021.133122.
  69. G. Zhou, X. Huang, H. Xu, Q. Wang, M. Wang, Y. Wang, Q. Li, Y. Zhang, Q. Ye, J. Zhang, Removal of polystyrene nanoplastics from water by CuNi carbon material: the role of adsorption, Sci. Total Environ., 820 (2022) 153190, doi: 10.1016/j.scitotenv.2022.153190.
  70. Y.J. Chen, Y. Chen, C. Miao, Y.R. Wang, G.K. Gao, R.X. Yang, H.J. Zhu, J.H. Wang, S. Li, Y.Q. Lan, Metal-organic frameworkbased foams for efficient microplastics removal, J. Mater. Chem., 8 (2020) 14644–14652.
  71. Y. Huang, X. Zeng, L. Guo, J. Lan, L. Zhang, D. Cao, Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks, Sep. Purif. Technol., 194 (2018) 462–469.
  72. X.D. Du, C.C. Wang, J.G. Liu, X.D. Zhao, J. Zhong, Y.X. Li, J. Li, P. Wang, Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism, J. Colloid Interface Sci., 506 (2017) 437–441.
  73. H. Wan, J. Wang, X. Sheng, J. Yan, W. Zhang, Y. Xu, Removal of polystyrene microplastics from aqueous solution using the metal–organic framework material of ZIF-67, Toxics, 10 (2022) 70, doi: 10.3390/toxics10020070.
  74. D. You, Y. Zhao, W. Yang, Q. Pan, J. Li, Metal–organic framework-based wood aerogel for effective removal of micro/nano plastics, Chem. Res. Chin. Univ., 38 (2021) 186–191.
  75. M. Sajid, S.M. Sajid Jillani, N. Baig, K. Alhooshani, Layered double hydroxide-modified membranes for water treatment: recent advances and prospects, Chemosphere, 287 (2022) 132140, doi: 10.1016/j.chemosphere.2021.132140.
  76. Z. Lv, S. Yang, H. Zhu, L. Chen, N.S. Alharbi, M. Wakeel, A. Wahid, C. Chen, Highly efficient removal of As(V) by using NiAl layered double oxide composites, Appl. Surf. Sci., 448 (2018) 599–608.
  77. J. Mittal, Recent progress in the synthesis of layered double hydroxides and their application for the adsorptive removal of dyes: a review, J. Environ. Manage., 295 (2021) 113017, doi: 10.1016/j.jenvman.2021.113017.
  78. E. Tiwari, N. Singh, N. Khandelwal, F.A. Monikh, G.K. Darbha, Application of Zn/Al layered double hydroxides for the removal of nano-scale plastic debris from aqueous systems, J. Hazard. Mater., 397 (2020) 122769, doi: 10.1016/j.jhazmat.2020.122769.
  79. X. Shi, X. Zhang, W. Gao, Y. Zhang, D. He, Removal of microplastics from water by magnetic nano-Fe3O4, Sci. Total Environ., 802 (2022) 149838, doi: 10.1016/j.scitotenv.2021.149838.
  80. Y. Heo, E.-H. Lee, S.-W. Lee, Adsorptive removal of micronsized polystyrene particles using magnetic iron oxide nanoparticles, Chemosphere, 307 (2022) 135672, doi: 10.1016/j.chemosphere.2022.135672.
  81. L.M.A. Martin, J. Sheng, P.V. Zimba, L. Zhu, O.O. Fadare, C. Haley, M. Wang, T.D. Phillips, J. Conkle, W. Xu, Testing an iron oxide nanoparticle-based method for magnetic separation of nanoplastics and microplastics from water, Nanomaterials, 12 (2022) 2348, doi: 10.3390/nano12142348.
  82. J. Grbic, B. Nguyen, E. Guo, J.B. You, D. Sinton, C.M. Rochman, Magnetic extraction of microplastics from environmental samples, Environ. Sci. Technol. Lett., 6 (2019) 68–72.
  83. N. Singh, N. Khandelwal, Z.A. Ganie, E. Tiwari, G.K. Darbha, Eco-friendly magnetic biochar: an effective trap for nanoplastics of varying surface functionality and size in the aqueous environment, Chem. Eng. J., 418 (2021) 129405, doi: 10.1016/j.cej.2021.129405.
  84. C. Shi, S. Zhang, J. Zhao, J. Ma, H. Wu, H. Sun, S. Cheng, Experimental study on removal of microplastics from aqueous solution by magnetic force effect on the magnetic sepiolite, Sep. Purif. Technol., 288 (2022) 120564, doi: 10.1016/j.seppur.2022.120564.
  85. P. Sirajudheen, N.C. Poovathumkuzhi, S. Vigneshwaran, B.M. Chelaveettil, S. Meenakshi, Applications of chitin and chitosan-based biomaterials for the adsorptive removal of textile dyes from water — a comprehensive review, Carbohydr. Polym., 273 (2021) 118604, doi: 10.1016/j.carbpol.2021.118604.
  86. N. Baig, Ihsanullah, M. Sajid, T.A. Saleh, Graphene-based adsorbents for the removal of toxic organic pollutants: a review, J. Environ. Manage., 244 (2019) 370–382.
  87. C. Sun, Z. Wang, H. Zheng, L. Chen, F. Li, Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics, J. Hazard. Mater., 420 (2021) 126599, doi: 10.1016/j.jhazmat.2021.126599.
  88. J. John, A.R. Nandhini, P. Velayudhaperumal Chellam, M. Sillanpää, Microplastics in mangroves and coral reef ecosystems: a review, Environ. Chem. Lett., 20 (2022) 397–416.
  89. B. Zheng, B. Li, H. Wan, X. Lin, Y. Cai, Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment, J. Hazard. Mater., 431 (2022) 128611, doi: 10.1016/j.jhazmat.2022.128611.
  90. X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931–3946.
  91. J.R. Werber, C.O. Osuji, M. Elimelech, Materials for nextgeneration desalination and water purification membranes, Nat. Rev. Mater., 1 (2016) 16018, doi: 10.1038/natrevmats.2016.18.
  92. M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol., 47 (2013) 3715–3723.
  93. B.H. Jeong, E.M. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes, J. Membr. Sci., 294 (2007) 1–7.
  94. P. Zhang, J.L. Gong, G.M. Zeng, C.H. Deng, H.C. Yang, H.Y. Liu, S.Y. Huan, Cross-linking to prepare composite graphene oxideframework membranes with high-flux for dyes and heavy metal ions removal, Chem. Eng. J., 322 (2017) 657–666.
  95. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2 (2017) 16098, doi: 10.1038/natrevmats.2016.98.
  96. L. Ding, L. Li, Y. Liu, Y. Wu, Z. Lu, J. Deng, Y. Wei, J. Caro, H. Wang, Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater, Nat. Sustainability, 3 (2020) 296–302.
  97. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341 (2013) 1502–1505.
  98. L. Yang, X. Cao, J. Cui, Y. Wang, Z. Zhu, H. Sun, W. Liang, J. Li, A. Li, Holey Ti3C2 nanosheets based membranes for efficient separation and removal of microplastics from water, J. Colloid Interface Sci., 617 (2022) 673–682.
  99. B. Fryczkowska, L. Przywara, Removal of microplastics from industrial wastewater utilising an ultrafiltration composite membrane rGO/PAN application, Desal. Water Treat., 214 (2021) 252–262.
  100. B. Fryczkowska, A. Machnicka, D. Biniaś, C. Ślusarczyk, J. Fabia, The influence of graphene addition on the properties of composite rGO/PAN membranes and their potential application for water disinfection, Membranes, 10 (2020) 58, doi: 10.3390/membranes10040058.
  101. C.D. Peters, T. Rantissi, V. Gitis, N.P. Hankins, Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning - a review, J. Water Process Eng., 44 (2021) 102374, doi: 10.1016/j.jwpe.2021.102374.
  102. M. Enfrin, J. Wang, A. Merenda, L.F. Dumée, J. Lee, Mitigation of membrane fouling by nano/microplastics via surface chemistry control, J. Membr. Sci., 633 (2021) 119379, doi: 10.1016/j.memsci.2021.119379.
  103. M.S.S.A. Saraswathi, D. Rana, S. Alwarappan, S. Gowrishankar, P. Vijayakumar, A. Nagendran, Polydopamine layered poly(ether imide) ultrafiltration membranes tailored with silver nanoparticles designed for better permeability, selectivity and antifouling, J. Ind. Eng. Chem., 76 (2019) 141–149.
  104. N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi, Development of hydrophilic microporous PES ultrafiltration membrane containing CuO nanoparticles with improved antifouling and separation performance, Mater. Chem. Phys., 222 (2019) 338–350.
  105. G. Chellasamy, R.M. Kiriyanthan, T. Maharajan, A. Radha, K. Yun, Remediation of microplastics using bionanomaterials: a review, Environ. Res., 208 (2022) 112724, doi: 10.1016/j.envres.2022.112724.
  106. B. Jalvo, A. Aguilar-Sanchez, M.-X. Ruiz-Caldas, A.P. Mathew, Water filtration membranes based on non-woven cellulose fabrics: effect of nanopolysaccharide coatings on selective particle rejection, antifouling, and antibacterial properties, Nanomaterials, 11 (2021) 1752, doi: 10.3390/nano11071752.
  107. A. Bahi, J. Shao, M. Mohseni, F.K. Ko, Membranes based on electrospun lignin-zeolite composite nanofibers, Sep. Purif. Technol., 187 (2017) 207–213.
  108. P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.-H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
  109. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Nanophotocatalysis in water and wastewater treatment, Desal. Water Treat., 243 (2021) 51–74.
  110. M. Bodzek, M. Rajca, Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds, Ecol. Chem. Eng. S, 19 (2012) 489–512.
  111. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  112. T. Ch-Th, R. Manisekaran, J. Santoyo-Salazar, B. Schoefs, S. Velumani, H. Castaneda, A. Jantrania, Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation, J. Photochem. Photobiol., A, 418 (2021) 113374, doi: 10.1016/j.jphotochem.2021.113374.
  113. B. Huang, J. He, S. Bian, C. Zhou, Z. Li, F. Xi, J. Liu, X. Dong, S-doped graphene quantum dots as nanophotocatalyst for visible light degradation, Chin. Chem. Lett., 29 (2018) 1698–1701.
  114. W. Gao, Y. Zhang, A. Mo, J. Jiang, Y. Liang, X. Cao, D. He, Removal of microplastics in water: technology progress and green strategies, Green Anal. Chem., 3 (2022) 100042, doi: 10.1016/j.greeac.2022.100042.
  115. I. Nabi, A.-U.-R. Bacha, K. Li, H. Cheng, T. Wang, Y. Liu, S. Ajmal, Y. Yang, Y. Feng, L. Zhang, Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film, iScience, 23 (2020) 101326, doi: 10.1016/j.isci.2020.101326.
  116. A. Uheida, H.G. Mejía, M. Abdel-Rehim, W. Hamd, J. Dutta, Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system, J. Hazard. Mater., 406 (2021) 124299, doi: 10.1016/j.jhazmat.2020.124299.
  117. M.M. Kamrannejad, A. Hasanzadeh, N. Nosoudi, L. Mai, A.A. Babaluo, Photocatalytic degradation of polypropylene/TiO2 nanocomposites, Mater. Res., 17 (2014) 1039–1046.
  118. J. Shang, M. Chai, Y. Zhu, Photocatalytic degradation of polystyrene plastic under fluorescent light, Environ. Sci. Technol., 37 (2003) 4494–4499.
  119. S. Wang, J. Zhang, L. Liu, F. Yang, Y. Zhang, Evaluation of cooling property of high-density polyethylene (HDPE)/titanium dioxide (TiO2) composites after accelerated ultraviolet (UV) irradiation, Sol. Energy Mater. Sol. Cells, 143 (2015) 120–127.
  120. R.T. Thomas, V. Nair, N. Sandhyarani, TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: a mechanistic investigation, Colloids Surf., A, 422 (2013) 1–9.
  121. R.T. Thomas, N. Sandhyarani, Enhancement in the photocatalytic degradation of low-density polyethylene– TiO2 nanocomposite films under solar irradiation, RSC Adv., 3 (2013) 14080–14087.
  122. L. Zan, W. Fa, S. Wang, Novel photodegradable low-density polyethylene‒TiO2 nanocomposite film, Environ. Sci. Technol., 40 (2006) 1681–1685.
  123. W. Asghar, I.A. Qazi, H. Ilyas, A.A. Khan, M.A. Awan, M.R. Aslam, Comparative solid phase photocatalytic degradation of polythene films with doped and undoped TiO2 nanoparticles, J. Nanomater., 2011 (2011) 461930, doi: 10.1155/2011/461930.
  124. K.I.M. da Silva, J.A. Fernandes, E.C. Kohlrausch, J. Dupont, M.J.L. Santos, M.P. Gil, Structural stability of photodegradable poly(l-lactic acid)/PE/TiO2 nanocomposites through TiO2 nanospheres and TiO2 nanotubes incorporation, Polym. Bull., 71 (2014) 1205–1217.
  125. S.S. Ali, I.A. Qazi, M. Arshad, Z. Khan, T.C. Voice, Ch.T. Mehmood, Photocatalytic degradation of low-density polyethylene (LDPE) films using titania nanotubes, Environ. Nanotechnol. Monit. Manage., 5 (2016) 44–53.
  126. P. Chowdhury, J. Moreira, H. Gomaa, A.K. Ray, Visible solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study, Ind. Eng. Chem. Res., 51 (2012) 4523–4532.
  127. D. Chatterjee, S. Dasgupta, N.N. Rao, Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light, Sol. Energy Mater. Sol. Cells, 90 (2006) 1013–1020.
  128. S.A. Tomás, O. Zelaya, R. Palomino, R. Lozada, O. García, J.M. Yánez, A. Ferreira da Silva, Optical characterization of sol gel TiO2 monoliths doped with brilliant green, Eur. Phys. J. Spec. Top., 153 (2008) 255–258.
  129. H.M. El-Dessouky, C.A. Lawrence, Nanoparticles dispersion in processing functionalised PP/TiO2 nanocomposites: distribution and properties, J. Nanopart. Res., 13 (2011) 1115–1124.
  130. M. Altan, H. Yildirim, Mechanical and morphological properties of polypropylene and high-density polyethylene matrix composites reinforced with surface modified nano sized TiO2 particles, World Acad. Sci. Eng. Technol., 4 (2010) 289–294.
  131. X.L. García-Montelongo, A. Martínez-de la Cruz, S. Vázquez-Rodríguez, L.M. Torres-Martínez, Photo-oxidative degradation of TiO2/polypropylene films, Mater. Res. Bull., 51 (2014) 56–62.
  132. J. Shang, M. Chai, Y. Zhu, Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst, J. Solid State Chem., 174 (2003) 104–110.
  133. S. Dinooplal, T. Sunil Jose, C. Rajesh, Solid-phase photodegradation of polystyrene by nano TiO2 under ultraviolet radiation, Environ. Nanotechnol. Monit. Manage., 12 (2019) 100229, doi: 10.1016/j.enmm.2019.100229.
  134. B. Sarwan, A.D. Acharya, S. Kaur, B. Pare, Visible light photocatalytic deterioration of polystyrene plastic using supported BiOCl nanoflower and nanodisk, Eur. Polym. J., 134 (2020) 109793, doi: 10.1016/j.eurpolymj.2020.109793.
  135. S. Cho, W. Choi, Solid-phase photocatalytic degradation of PVC-TiO2 polymer composites, J. Photochem. Photobiol., A, 143 (2001) 221–228.
  136. Z. Ouyang, Z. Zhang, Y. Jing, L. Bai, M. Zhao, X. Hao, X. Li, X. Guo, The photo-aging of polyvinyl chloride microplastics under different UV irradiations, Gondwana Res., 108 (2022) 72–80.
  137. P.H. Allé, P. Garcia-Muñoz, K. Adouby, N. Keller, D. Robert, Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO2/β-SiC alveolar foams, Environ. Chem. Lett., 19 (2021) 1803–1808.
  138. J. Ge, Z. Zhang, Z. Ouyang, M. Shang, P. Liu, H. Li, X. Guo, Photocatalytic degradation of (micro)plastics using TiO2-based and other catalysts: properties, influencing factor, and mechanism, Environ. Res., 209 (2022) 112729, doi: 10.1016/j.envres.2022.112729.
  139. T.S. Tofa, K.L. Kunjali, S. Paul, J. Dutta, Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods, Environ. Chem. Lett., 17 (2019) 1341–1346.
  140. T.S. Tofa, F. Ye, K.L. Kunjali, J. Dutta, Enhanced visible light photodegradation of microplastic fragments with plasmonic platinum/zinc oxide nanorod photocatalysts, Catalysts, 9 (2019) 819, doi: 10.3390/catal9100819.
  141. M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, V. Barbieri, C. Siligardi, E.I. Cedillo-González, New strategy for microplastic degradation: green photocatalysis using a proteinbased porous N-TiO2 semiconductor, Ceram. Int., 45 (2019) 9618–9624.
  142. G. Liu, S. Liao, D. Zhu, J. Cui, W. Zhou, Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2, Solid State Sci., 13 (2011) 88–94.
  143. R. Jiang, G. Lu, Z. Yan, J. Liu, D. Wu, Y. Wang, Microplastic degradation by hydroxy-rich bismuth oxychloride, J. Hazard. Mater., 405 (2021) 124247, doi: 10.1016/j.jhazmat.2020.124247.
  144. L. Ding, X. Yu, X. Guo, Y. Zhang, Z. Ouyang, P. Liu, C. Zhang, T. Wang, H. Jia, L. Zhu, The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: important role of clay minerals, Water Res., 208 (2022) 117879, doi: 10.1016/j.watres.2021.117879.
  145. B. Cao, S. Wan, Y. Wang, H. Guo, M. Ou, Q. Zhong, Highly efficient visible-light driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1–xS photocatalyst, J. Colloid Interface Sci., 605 (2022) 311–319.
  146. R.K. Upadhyay, N. Soin, S.S. Roy, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review, RSC Adv., 4 (2014) 3823–3851.
  147. I. Uogintė, S. Pleskytė, M. Skapas, S. Stanionytė, G. Lujanienė, Degradation and optimization of microplastic in aqueous solutions with graphene oxide‑based nanomaterials, Int. J. Environ. Sci. Technol., 20 (2023) 9693–9706.
  148. J. Kang, L. Zhou, X. Duan, H. Sun, Z. Ao, S. Wang, Degradation of cosmetic microplastics via functionalized carbon nanosprings, Matter, 1 (2019) 745–758.
  149. H. Eskandarloo, A. Kierulf, A. Abbaspourrad, Light-harvesting synthetic nano-and micromotors: a review, Nanoscale, 9 (2017) 12218–12230.
  150. S. Hermanová, M. Pumera, Micromachines for microplastics treatment, ACS Nanosci., 2 (2022) 225–232.
  151. L. Wang, A. Kaeppler, D. Fischer, J. Simmchen, Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter, ACS Appl. Mater. Interfaces, 11 (2019) 32937–32944.