References
- Plastic Europe, Plastics – Facts 2022, Market Data as of October
2022. Available at https://plasticseurope.org/pl (Available
11.07.2023).
- A.A. Arpia, W.-H. Chen, A.T. Ubando, S.R. Naqvi, A.B. Culaba,
Microplastic degradation as a sustainable concurrent approach
for producing biofuel and obliterating hazardous
environmental effects: a state-of-the-art review, J. Hazard.
Mater., 418 (2021) 126381, doi: 10.1016/j.jhazmat.2021.126381.
- Y.L. Cheng, J.-G. Kim, H.-B. Kim, J.H. Choi, Y.F. Tsang,
K. Baek, Occurrence and removal of microplastics in wastewater
treatment plants and drinking water purification facilities:
a review, Chem. Eng. J., 410 (2021) 128381, doi: 10.1016/j.cej.2020.128381.
- M. Bodzek, A. Pohl, Removal of microplastics in unit processes
used in water and wastewater treatment: a review, Arch.
Environ. Prot., 48 (2022) 102–128.
- M. Bodzek, A. Pohl, Possibilities of removing microplastics
from the aquatic environment using, membrane processes,
Desal. Water Treat., 288 (2023) 104–120.
- R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland,
A.W. John, D. Mcgonigle, A.E. Russell, Lost at sea: where is all
the plastic?, Science, 304 (2004) 838, doi: 10.1126/science.1094559.
- M. Padervand, E. Lichtfouse, D. Robert, C. Wang, Removal of
microplastics from the environment. A review, Environ. Chem.
Lett., 18 (2020) 807–828.
- J. Shi, Y. Dong, Y. Shi, T. Yin, W. He, T. An, Y. Tang, X. Hou,
S. Chong, D. Chen, K. Qin, H. Lin, Groundwater antibiotics
and microplastics in a drinking-water source area, northern
China: occurrence, spatial distribution, risk assessment, and
correlation, Environ. Res., 210 (2022) 112855, doi: 10.1016/j.envres.2022.112855.
- S.L. Wright, J. Ulke, A. Font, K.L.A. Chan, F.J. Kelly, Atmospheric
microplastic deposition in an urban environment and
an evaluation of transport, Environ. Int., 136 (2020) 105411,
doi: 10.1016/j.envint.2019.105411.
- J. Zhao, W. Ran, J. Teng, Y. Liu, H. Liu, X. Yin, R. Cao, Q. Wang,
Microplastic pollution in sediments from the Bohai Sea and
the Yellow Sea, China, Sci. Total Environ., 640–641 (2018)
637–645.
- S. Sharma, S. Chatterjee, Microplastic pollution, a threat
to marine ecosystem and human health: a short review,
Environ. Sci. Pollut. Res. Int., 24 (2017) 21530–21547.
- S. Acarer, Microplastics in wastewater treatment plants:
sources, properties, removal efficiency, removal mechanisms,
and interactions with pollutants, Water Sci. Technol., 87 (2023)
685–710.
- P.U. Iyare, S.K. Ouki, T. Bond, Microplastics removal in
wastewater treatment plants: a critical review, Environ. Sci.
Water Res. Technol., 6 (2020) 2664–2675.
- I. Ali, Q. Cheng, T. Ding, Q. Yiguang, Z. Yuechao, H. Sun,
C. Peng, I. Naz, J. Li, J. Liu, Micro- and nanoplastics in the
environment: occurrence, detection, characterization and
toxicity – a critical review, J. Cleaner Prod., 313 (2021) 127863,
doi: 10.1016/j.jclepro.2021.127863.
- L. Gao, D. Fu, J. Zhao, W. Wu, Z. Wang, Y. Su, L. Peng,
Microplastics aged in various environmental media exhibited
strong sorption to heavy metals in seawater, Mar. Pollut. Bull.,
169 (2021) 112480, doi: 10.1016/j.marpolbul.2021.112480.
- M. Munoz, D. Ortiz, J. Nieto-Sandoval, Z.M. de Pedro,
J.A. Casas, Adsorption of micropollutants onto realistic
microplastics: role of microplastic nature, size, age, and NOM
fouling, Chemosphere, 283 (2021) 131085, doi: 10.1016/j.chemosphere.2021.131085.
- W.H. Abuwatfa, D. Al-Muqbel, A. Al-Othman, N. Halalsheh,
M. Tawalbeh, Insights into the removal of microplastics from
water using biochar in the era of COVID-19: a mini review,
Case Stud. Chem. Environ. Eng., 4 (2021) 100151, doi: 10.1016/j.cscee.2021.100151.
- L.G.A. Barboza, S.C. Cunha, C. Monteiro, J.O. Fernandes,
L. Guilhermino, Bisphenol A and its analogs in muscle and
liver of fish from the North East Atlantic Ocean in relation
to microplastic contamination. Exposure and risk to human
consumers, J. Hazard. Mater., 393 (2020) 122419, doi: 10.1016/j.jhazmat.2020.122419.
- A. Rahman, A.Y. Sarkar, P. Om, G. Achari, J. Slobodnik,
Potential human health risks due to environmental exposure
to nano- and microplastics and knowledge gaps: a scoping
review, Sci. Total Environ., 757 (2020) 143872, doi: 10.1016/j.scitotenv.2020.143872.
- Q. Zhang, E. Xu, J. Li, Q. Chen, L. Ma, E. Zeng, H. Shi, A review
of microplastics in table salt, drinking water, and air: direct
human exposure, Environ. Sci. Technol., 54 (2020) 3740–3751.
- S.A. Mason, V.G. Welch, J. Neratko, Synthetic polymer
contamination in bottled water, Front. Chem., 6 (2018) 407,
doi: 10.3389/fchem.2018.00407.
- P. Schwabl, S. Koppel, P. Konigshofer, T. Bucsics, M. Trauner,
T. Reiberger, B. Liebmann, Detection of various microplastics
in human stool: a prospective case series, Ann. Intern. Med.,
171 (2019) 453–457.
- N. Badola, A. Bahuguna, Y. Sasson, J.S. Chauhan, Microplastics
removal strategies: a step toward finding the solution, Front.
Environ. Sci. Eng., 16 (2022) 7, doi: 10.1007/s11783-021-1441-3.
- A.L. Patrício Silva, New frontiers in remediation of (micro)
plastics, Curr. Opin. Green Sustainable Chem., 28 (2021) 100443,
doi: 10.1016/j.cogsc.2020.100443.
- N.H.H. Hairom, C.F. Soon, R.M.S.R. Mohamed, M. Morsin,
N. Zainal, N. Nayan, C.Z. Zulkifli, N.H. Harun, A review of
nanotechnological applications to detect and control surface
water pollution, Environ. Technol. Innovation, 24 (2021) 102032,
doi: 10.1016/j.eti.2021.102032.
- Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan,
Nanomaterials enabled water and wastewater treatment,
NanoImpact, 3–4 (2016) 22–39.
- M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Nanotechnology
in water and wastewater treatment. Graphene – the
nanomaterial for next generation of semipermeable membranes,
Crit. Rev. Environ. Sci. Technol., 50 (2020) 1515–1579.
- J. Scaria, P.V. Nidheesh, M.S. Kumar, Synthesis and applications
of various bimetallic nanomaterials in water and wastewater
treatment, J. Environ. Manage., 259 (2020) 110011, doi: 10.1016/j.jenvman.2019.110011.
- M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, The
application of nanomaterial adsorbents for the removal of
impurities from water and wastewaters: a review, Desal. Water
Treat., 185 (2020) 1–26.
- M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, The
application of nanotechnology and nanomaterials in water
and wastewater treatment. membranes, photocatalysis and
disinfection, Desal. Water Treat., 186 (2020) 88–106.
- M. Sajid, I. Ihsanullah, M.T. Khan, N. Baig, Nanomaterials-based
adsorbents for remediation of microplastics and nanoplastics
in aqueous media: a review, Sep. Purif. Technol., 305 (2023)
122453, doi: 10.1016/j.seppur.2022.122453.
- O.M. Rodríguez-Narvaez, A. Goonetilleke, L. Perez,
E.R. Bandala, Engineered technologies for the separation and
degradation of microplastics in water: a review, Chem. Eng. J.,
414 (2021) 128692, doi: 10.1016/j.cej.2021.128692.
- R. Ahmed, A.K. Hamid, S.A. Krebsbach, J. He, D. Wang,
Critical review of microplastics removal from the
environment, Chemosphere, 293 (2022) 133557, doi: 10.1016/j.chemosphere.2022.133557.
- L. Vuori, M. Ollikainen, How to remove microplastics in
wastewater? A cost-effectiveness analysis, Ecol. Econ.,
192 (2022) 107246, doi: 10.1016/j.ecolecon.2021.107246.
- E.O. Ezugbe, S. Rathilal, Membrane technologies in wastewater
treatment: a review, Membranes, 10 (2020) 89, doi: 10.3390/membranes10050089.
- M. Enfrin, L.F. Dumée, J. Lee, Nano/microplastics in water and
wastewater treatment processes – origin, impact and potential
solutions, Water Res., 161 (2019) 621–638.
- M.B. Ahmed, Md.S. Rahman, J. Alom, M.D. Saif Hasan,
M.A.H. Johir, M. Ibrahim H. Mondal, D.-Y. Lee, J. Park,
J.L. Zhou, M.-H. Yoon, Microplastic particles in the aquatic
environment: a systematic review, Sci. Total Environ., 775 (2021)
145793, doi: 10.1016/j.scitotenv.2021.145793.
- J.P. Harrison, M. Sapp, M. Schratzberger, A.M. Osborn, Interactions
between microorganisms and marine microplastics:
a call for research, Mar. Technol. Soc. J., 45 (2011) 12–20.
- I.V. Muralikrishna, V. Manickam, Wastewater Treatment
Technologies. In Environmental Management, Elsevier
Butterworth-Heinemann, Oxford, UK, 2017, pp. 249–293.
- M. Malankowska, C. Echaide-Gorriz, J. Coronas, Microplastics
in marine environment – sources, classification, and potential
remediation by membrane technology – a review, Environ. Sci.
Water Res. Technol., 7 (2021) 243–258.
- W. Zhao, I.W. Chen, F. Huang, Toward large-scale water
treatment using nanomaterials, Nano Today, 27 (2019) 11–27.
- P.S. Goh, H.S. Kang, A.F. Ismail, W.H. Khor, L.K. Quen,
D. Higgins, Nanomaterials for microplastic remediation from
aquatic environment: why nano matters?, Chemosphere,
299 (2022) 134418, doi: 10.1016/j.chemosphere.2022.134418.
- D.A. Fedosov, A.V. Smirnov, E.E. Knyazeva, I.I. Ivanova, Zeolite
membranes: synthesis, properties, and application, Pet. Chem.,
51 (2012) 657–667.
- M.R.S. Kebria, M. Jahanshahi, A. Rahimpour, SiO2 modified
polyethyleneimine-based nanofiltration membranes for dye
removal from aqueous and organic solutions, Desalination,
367 (2015) 255–264.
- T. Tosco, P.M. Papini, C.C. Viggi, R. Sethi, Nanoscale zerovalent
iron particles for groundwater remediation: a review,
J. Cleaner Prod., 77 (2014) 10–21.
- P.F. Andrade, A.F. de Faria, S.R. Oliveira, M.A.Z. Arruda,
M.D.C. Gonçalves, Improved antibacterial activity of
nanofiltration polysulfone membranes modified with silver
nanoparticles, Water Res., 81 (2015) 333–342.
- M. Khajeh, S. Laurent, K. Dastafkan, Nanoadsorbents:
classification, preparation, and applications (with emphasis on
aqueous media), Chem. Rev., 113 (2013) 7728–7768.
- G. Rashi, N. Kumar, S.S. Ray, Recent advances in carbon
nanomaterial-based adsorbents for water purification, Coord.
Chem. Rev., 405 (2020) 213111, doi: 10.1016/j.ccr.2019.213111.
- K. Ankit, A. Yadav, T.R. Raj, M.G. Keischgens, H. Rathore,
I.E. Sarris, Carbon nanoparticles as sources for a cost-effective
water purification method: a comprehensive review, Fluids,
5 (2020) 230, doi: 10.3390/fluids5040230.
- M. Bodzek, K. Konieczny A. Kwiecińska-Mydlak, New
generation of semipermeable membranes with carbon
nanotubes for water and wastewater treatment: critical review,
Arch. Environ. Prot., 47 (2021) 3–27.
- A. Ahmad, K.A. El-Nour, R.A.A. Ammar, A. Al-Warthan,
Carbon nanotubes, science and technology part (I) structure,
synthesis and characterization, Arabian J. Chem., 5 (2012)
1–23.
- H.-Y. Xu, L.-C. Wu, H. Zhao, L.-G. Jin, S.-Y. Qi, Synergic effect
between adsorption and photocatalysis of metal-free g-C3N4
derived from different precursors, PLoS One, 10 (2015)
e0142616, doi: 10.1371/journal.pone.0142616.
- P. Murugesan, J.A. Moses, C. Anandharamakrishnan,
Photocatalytic disinfection efficiency of 2D structure graphitic
carbon nitride-based nanocomposites: a review, J. Mater. Sci.,
54 (2019) 12206–12235.
- L. Madhura, S. Singh, S. Kanchi, M. Sabela, K. Bisetty,
Nanotechnology based water quality management for
wastewater treatment, Environ. Chem. Lett., 17 (2018) 65–121.
- J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk,
Experimental trends in polymer nanocomposites –
a review,
Mater. Sci. Eng., A, 393 (2005) 1–11.
- X. Zhao, L. Lv, B.C. Pan, W.M. Zhang, S.J. Zhang, Q.X. Zhang,
Polymer-supported nanocomposites for environmental
application: a review, Chem. Eng. J., 170 (2011) 381–394.
- M. Ghorbani, O. Seyedin, M. Aghamohammadhassan,
Adsorptive removal of lead(II) ion from water and wastewater
media using carbon-based nanomaterials as unique
sorbents: a review, J. Environ. Manage., 254 (2020) 109814,
doi: 10.1016/j.jenvman.2019.109814.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen, Progress
in the preparation and application of modified biochar for
improved contaminant removal from water and wastewater,
Bioresour. Technol., 214 (2016) 836–851.
- M. Sajid, I. Ihsanullah, M. Tariq Khan, N. Baig, Nanomaterialsbased
adsorbents for remediation of microplastics and
nanoplastics in aqueous media: a review, Sep. Purif. Technol.,
305 (2023) 122453, doi: 10.1016/j.seppur.2022.122453.
- K. Jain, A.S. Patel, V.P. Pardhi, S.J.S. Flora, Nanotechnology in
wastewater management: a new paradigm towards wastewater
treatment, Molecules, 26 (2021) 1797, doi: 10.3390/molecules26061797.
- I. Ali, New generation adsorbents for water treatment, Chem.
Rev., 112 (2012) 5073–5091.
- C. Sun, Z. Wang, L. Chen, F. Li, Fabrication of robust and
compressive chitin and graphene oxide sponges for removal of
microplastics with different functional groups, Chem. Eng. J.,
393 (2020) 124796, doi: 10.1016/j.cej.2020.124796.
- M. Sajid, M. Asif, N. Baig, M. Kabeer, I. Ihsanullah,
A.W. Mohammad, Carbon nanotubes-based adsorbents:
properties, functionalization, interaction mechanisms, and
applications in water purification, J. Water Process Eng.,
47 (2022) 102815, doi: 10.1016/j.jwpe.2022.102815.
- O. Güler, N. Bagcı, A short review on mechanical properties
of graphene reinforced metal matrix composites, J. Mater. Res.
Technol., 9 (2020) 6808–6833.
- G. Peng, M. Xiang, W. Wang, Z. Su, H. Liu, Y. Mao, Y. Chen,
P. Zhang, Engineering 3D graphene-like carbon-assembled
layered double oxide for efficient microplastic removal
in a wide pH range, J. Hazard. Mater., 433 (2022) 128672,
doi: 10.1016/j.jhazmat.2022.128672.
- F. Yuan, L. Yue, H. Zhao, H. Wu, Study on the adsorption of
polystyrene microplastics by three-dimensional reduced
graphene oxide, Water Sci. Technol., 81 (2020) 2163–2175.
- Y. Tang, S. Zhang, Y. Su, D. Wu, Y. Zhao, B. Xie, Removal of
microplastics from aqueous solutions by magnetic carbon
nanotubes, Chem. Eng. J., 406 (2021) 126804, doi: 10.1016/j.cej.2020.126804.
- H. Zhao, X. Huang, L. Wang, X. Zhao, F. Yan, Y. Yang, G. Li,
P. Gao, P. Ji, Removal of polystyrene nanoplastics from aqueous
solutions using a novel magnetic material: adsorbability,
mechanism, and reusability, Chem. Eng. J., 430 (2022) 133122,
doi: 10.1016/j.cej.2021.133122.
- G. Zhou, X. Huang, H. Xu, Q. Wang, M. Wang, Y. Wang,
Q. Li, Y. Zhang, Q. Ye, J. Zhang, Removal of polystyrene
nanoplastics from water by CuNi carbon material: the role of
adsorption, Sci. Total Environ., 820 (2022) 153190, doi: 10.1016/j.scitotenv.2022.153190.
- Y.J. Chen, Y. Chen, C. Miao, Y.R. Wang, G.K. Gao, R.X. Yang,
H.J. Zhu, J.H. Wang, S. Li, Y.Q. Lan, Metal-organic frameworkbased
foams for efficient microplastics removal, J. Mater.
Chem., 8 (2020) 14644–14652.
- Y. Huang, X. Zeng, L. Guo, J. Lan, L. Zhang, D. Cao, Heavy metal
ion removal of wastewater by zeolite-imidazolate frameworks,
Sep. Purif. Technol., 194 (2018) 462–469.
- X.D. Du, C.C. Wang, J.G. Liu, X.D. Zhao, J. Zhong, Y.X. Li,
J. Li, P. Wang, Extensive and selective adsorption of ZIF-67
towards organic dyes: performance and mechanism, J. Colloid
Interface Sci., 506 (2017) 437–441.
- H. Wan, J. Wang, X. Sheng, J. Yan, W. Zhang, Y. Xu, Removal
of polystyrene microplastics from aqueous solution using the
metal–organic framework material of ZIF-67, Toxics, 10 (2022)
70, doi: 10.3390/toxics10020070.
- D. You, Y. Zhao, W. Yang, Q. Pan, J. Li, Metal–organic
framework-based wood aerogel for effective removal of
micro/nano plastics, Chem. Res. Chin. Univ., 38 (2021)
186–191.
- M. Sajid, S.M. Sajid Jillani, N. Baig, K. Alhooshani, Layered
double hydroxide-modified membranes for water treatment:
recent advances and prospects, Chemosphere, 287 (2022)
132140, doi: 10.1016/j.chemosphere.2021.132140.
- Z. Lv, S. Yang, H. Zhu, L. Chen, N.S. Alharbi, M. Wakeel,
A. Wahid, C. Chen, Highly efficient removal of As(V) by
using NiAl layered double oxide composites, Appl. Surf. Sci.,
448 (2018) 599–608.
- J. Mittal, Recent progress in the synthesis of layered double
hydroxides and their application for the adsorptive removal
of dyes: a review, J. Environ. Manage., 295 (2021) 113017,
doi: 10.1016/j.jenvman.2021.113017.
- E. Tiwari, N. Singh, N. Khandelwal, F.A. Monikh,
G.K. Darbha, Application of Zn/Al layered double hydroxides
for the removal of nano-scale plastic debris from aqueous
systems, J. Hazard. Mater., 397 (2020) 122769, doi: 10.1016/j.jhazmat.2020.122769.
- X. Shi, X. Zhang, W. Gao, Y. Zhang, D. He, Removal of
microplastics from water by magnetic nano-Fe3O4, Sci. Total
Environ., 802 (2022) 149838, doi: 10.1016/j.scitotenv.2021.149838.
- Y. Heo, E.-H. Lee, S.-W. Lee, Adsorptive removal of micronsized
polystyrene particles using magnetic iron oxide
nanoparticles, Chemosphere, 307 (2022) 135672, doi: 10.1016/j.chemosphere.2022.135672.
- L.M.A. Martin, J. Sheng, P.V. Zimba, L. Zhu, O.O. Fadare,
C. Haley, M. Wang, T.D. Phillips, J. Conkle, W. Xu, Testing an
iron oxide nanoparticle-based method for magnetic separation
of nanoplastics and microplastics from water, Nanomaterials,
12 (2022) 2348, doi: 10.3390/nano12142348.
- J. Grbic, B. Nguyen, E. Guo, J.B. You, D. Sinton, C.M. Rochman,
Magnetic extraction of microplastics from environmental
samples, Environ. Sci. Technol. Lett., 6 (2019) 68–72.
- N. Singh, N. Khandelwal, Z.A. Ganie, E. Tiwari, G.K. Darbha,
Eco-friendly magnetic biochar: an effective trap for nanoplastics
of varying surface functionality and size in the aqueous
environment, Chem. Eng. J., 418 (2021) 129405, doi: 10.1016/j.cej.2021.129405.
- C. Shi, S. Zhang, J. Zhao, J. Ma, H. Wu, H. Sun, S. Cheng,
Experimental study on removal of microplastics from
aqueous solution by magnetic force effect on the magnetic
sepiolite, Sep. Purif. Technol., 288 (2022) 120564, doi: 10.1016/j.seppur.2022.120564.
- P. Sirajudheen, N.C. Poovathumkuzhi, S. Vigneshwaran,
B.M. Chelaveettil, S. Meenakshi, Applications of chitin and
chitosan-based biomaterials for the adsorptive removal of
textile dyes from water — a comprehensive review, Carbohydr.
Polym., 273 (2021) 118604, doi: 10.1016/j.carbpol.2021.118604.
- N. Baig, Ihsanullah, M. Sajid, T.A. Saleh, Graphene-based
adsorbents for the removal of toxic organic pollutants: a review,
J. Environ. Manage., 244 (2019) 370–382.
- C. Sun, Z. Wang, H. Zheng, L. Chen, F. Li, Biodegradable
and re-usable sponge materials made from chitin for efficient
removal of microplastics, J. Hazard. Mater., 420 (2021) 126599,
doi: 10.1016/j.jhazmat.2021.126599.
- J. John, A.R. Nandhini, P. Velayudhaperumal Chellam,
M. Sillanpää, Microplastics in mangroves and coral reef
ecosystems: a review, Environ. Chem. Lett., 20 (2022) 397–416.
- B. Zheng, B. Li, H. Wan, X. Lin, Y. Cai, Coral-inspired
environmental durability aerogels for micron-size plastic
particles removal in the aquatic environment, J. Hazard. Mater.,
431 (2022) 128611, doi: 10.1016/j.jhazmat.2022.128611.
- X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology
in water and wastewater treatment, Water Res., 47 (2013)
3931–3946.
- J.R. Werber, C.O. Osuji, M. Elimelech, Materials for nextgeneration
desalination and water purification membranes,
Nat. Rev. Mater., 1 (2016) 16018, doi: 10.1038/natrevmats.2016.18.
- M. Hu, B. Mi, Enabling graphene oxide nanosheets as water
separation membranes, Environ. Sci. Technol., 47 (2013)
3715–3723.
- B.H. Jeong, E.M. Hoek, Y. Yan, A. Subramani, X. Huang,
G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization
of thin film nanocomposites: a new concept for reverse
osmosis membranes, J. Membr. Sci., 294 (2007) 1–7.
- P. Zhang, J.L. Gong, G.M. Zeng, C.H. Deng, H.C. Yang, H.Y. Liu,
S.Y. Huan, Cross-linking to prepare composite graphene oxideframework
membranes with high-flux for dyes and heavy
metal ions removal, Chem. Eng. J., 322 (2017) 657–666.
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and
nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2 (2017)
16098, doi: 10.1038/natrevmats.2016.98.
- L. Ding, L. Li, Y. Liu, Y. Wu, Z. Lu, J. Deng, Y. Wei, J. Caro,
H. Wang, Effective ion sieving with Ti3C2Tx MXene membranes
for production of drinking water from seawater,
Nat. Sustainability, 3 (2020) 296–302.
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese,
P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum,
Y. Gogotsi, Cation intercalation and high volumetric capacitance
of two-dimensional titanium carbide, Science, 341 (2013)
1502–1505.
- L. Yang, X. Cao, J. Cui, Y. Wang, Z. Zhu, H. Sun, W. Liang, J. Li,
A. Li, Holey Ti3C2 nanosheets based membranes for efficient
separation and removal of microplastics from water, J. Colloid
Interface Sci., 617 (2022) 673–682.
- B. Fryczkowska, L. Przywara, Removal of microplastics from
industrial wastewater utilising an ultrafiltration composite
membrane rGO/PAN application, Desal. Water Treat.,
214 (2021) 252–262.
- B. Fryczkowska, A. Machnicka, D. Biniaś, C. Ślusarczyk,
J. Fabia, The influence of graphene addition on the properties
of composite rGO/PAN membranes and their potential
application for water disinfection, Membranes, 10 (2020) 58,
doi: 10.3390/membranes10040058.
- C.D. Peters, T. Rantissi, V. Gitis, N.P. Hankins, Retention of
natural organic matter by ultrafiltration and the mitigation
of membrane fouling through pre-treatment, membrane
enhancement, and cleaning - a review, J. Water Process Eng.,
44 (2021) 102374, doi: 10.1016/j.jwpe.2021.102374.
- M. Enfrin, J. Wang, A. Merenda, L.F. Dumée, J. Lee,
Mitigation of membrane fouling by nano/microplastics via
surface chemistry control, J. Membr. Sci., 633 (2021) 119379,
doi: 10.1016/j.memsci.2021.119379.
- M.S.S.A. Saraswathi, D. Rana, S. Alwarappan, S. Gowrishankar,
P. Vijayakumar, A. Nagendran, Polydopamine layered
poly(ether imide) ultrafiltration membranes tailored with
silver nanoparticles designed for better permeability,
selectivity and antifouling, J. Ind. Eng. Chem., 76 (2019)
141–149.
- N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi,
Development of hydrophilic microporous PES ultrafiltration
membrane containing CuO nanoparticles with improved
antifouling and separation performance, Mater. Chem. Phys.,
222 (2019) 338–350.
- G. Chellasamy, R.M. Kiriyanthan, T. Maharajan, A. Radha,
K. Yun, Remediation of microplastics using bionanomaterials:
a review, Environ. Res., 208 (2022) 112724, doi: 10.1016/j.envres.2022.112724.
- B. Jalvo, A. Aguilar-Sanchez, M.-X. Ruiz-Caldas, A.P. Mathew,
Water filtration membranes based on non-woven cellulose
fabrics: effect of nanopolysaccharide coatings on selective
particle rejection, antifouling, and antibacterial properties,
Nanomaterials, 11 (2021) 1752, doi: 10.3390/nano11071752.
- A. Bahi, J. Shao, M. Mohseni, F.K. Ko, Membranes based on
electrospun lignin-zeolite composite nanofibers, Sep. Purif.
Technol., 187 (2017) 207–213.
- P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.-H. Kim, T. Akter,
S. Kalagara, Recent advances in photocatalytic treatment of
pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
- M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Nanophotocatalysis
in water and wastewater treatment,
Desal. Water Treat., 243 (2021) 51–74.
- M. Bodzek, M. Rajca, Photocatalysis in the treatment and
disinfection of water. Part I. Theoretical backgrounds,
Ecol. Chem. Eng. S, 19 (2012) 489–512.
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review,
Water Res., 44 (2010) 2997–3027.
- T. Ch-Th, R. Manisekaran, J. Santoyo-Salazar, B. Schoefs,
S. Velumani, H. Castaneda, A. Jantrania, Graphene oxide
decorated TiO2 and BiVO4 nanocatalysts for enhanced
visible-light-driven photocatalytic bacterial inactivation,
J. Photochem. Photobiol., A, 418 (2021) 113374, doi: 10.1016/j.jphotochem.2021.113374.
- B. Huang, J. He, S. Bian, C. Zhou, Z. Li, F. Xi, J. Liu, X. Dong,
S-doped graphene quantum dots as nanophotocatalyst
for visible light degradation, Chin. Chem. Lett., 29 (2018)
1698–1701.
- W. Gao, Y. Zhang, A. Mo, J. Jiang, Y. Liang, X. Cao, D. He, Removal
of microplastics in water: technology progress and green
strategies, Green Anal. Chem., 3 (2022) 100042, doi: 10.1016/j.greeac.2022.100042.
- I. Nabi, A.-U.-R. Bacha, K. Li, H. Cheng, T. Wang, Y. Liu,
S. Ajmal, Y. Yang, Y. Feng, L. Zhang, Complete photocatalytic
mineralization of microplastic on TiO2 nanoparticle film,
iScience, 23 (2020) 101326, doi: 10.1016/j.isci.2020.101326.
- A. Uheida, H.G. Mejía, M. Abdel-Rehim, W. Hamd, J. Dutta,
Visible light photocatalytic degradation of polypropylene
microplastics in a continuous water flow system, J. Hazard.
Mater., 406 (2021) 124299, doi: 10.1016/j.jhazmat.2020.124299.
- M.M. Kamrannejad, A. Hasanzadeh, N. Nosoudi, L. Mai, A.A.
Babaluo, Photocatalytic degradation of polypropylene/TiO2
nanocomposites, Mater. Res., 17 (2014) 1039–1046.
- J. Shang, M. Chai, Y. Zhu, Photocatalytic degradation of
polystyrene plastic under fluorescent light, Environ. Sci.
Technol., 37 (2003) 4494–4499.
- S. Wang, J. Zhang, L. Liu, F. Yang, Y. Zhang, Evaluation of
cooling property of high-density polyethylene (HDPE)/titanium dioxide (TiO2) composites after accelerated
ultraviolet (UV) irradiation, Sol. Energy Mater. Sol. Cells,
143 (2015) 120–127.
- R.T. Thomas, V. Nair, N. Sandhyarani, TiO2 nanoparticle
assisted solid phase photocatalytic degradation of polythene
film: a mechanistic investigation, Colloids Surf., A,
422 (2013) 1–9.
- R.T. Thomas, N. Sandhyarani, Enhancement in the
photocatalytic degradation of low-density polyethylene–
TiO2 nanocomposite films under solar irradiation, RSC Adv.,
3 (2013) 14080–14087.
- L. Zan, W. Fa, S. Wang, Novel photodegradable low-density
polyethylene‒TiO2 nanocomposite film, Environ. Sci.
Technol., 40 (2006) 1681–1685.
- W. Asghar, I.A. Qazi, H. Ilyas, A.A. Khan, M.A. Awan,
M.R. Aslam, Comparative solid phase photocatalytic
degradation of polythene films with doped and undoped
TiO2 nanoparticles, J. Nanomater., 2011 (2011) 461930,
doi: 10.1155/2011/461930.
- K.I.M. da Silva, J.A. Fernandes, E.C. Kohlrausch, J. Dupont,
M.J.L. Santos, M.P. Gil, Structural stability of photodegradable
poly(l-lactic acid)/PE/TiO2 nanocomposites through TiO2
nanospheres and TiO2 nanotubes incorporation, Polym. Bull.,
71 (2014) 1205–1217.
- S.S. Ali, I.A. Qazi, M. Arshad, Z. Khan, T.C. Voice,
Ch.T. Mehmood, Photocatalytic degradation of low-density
polyethylene (LDPE) films using titania nanotubes, Environ.
Nanotechnol. Monit. Manage., 5 (2016) 44–53.
- P. Chowdhury, J. Moreira, H. Gomaa, A.K. Ray, Visible solar-light-driven photocatalytic degradation of phenol with
dye-sensitized TiO2: parametric and kinetic study, Ind. Eng.
Chem. Res., 51 (2012) 4523–4532.
- D. Chatterjee, S. Dasgupta, N.N. Rao, Visible light assisted
photodegradation of halocarbons on the dye modified TiO2
surface using visible light, Sol. Energy Mater. Sol. Cells,
90 (2006) 1013–1020.
- S.A. Tomás, O. Zelaya, R. Palomino, R. Lozada, O. García,
J.M. Yánez, A. Ferreira da Silva, Optical characterization of
sol gel TiO2 monoliths doped with brilliant green, Eur. Phys.
J. Spec. Top., 153 (2008) 255–258.
- H.M. El-Dessouky, C.A. Lawrence, Nanoparticles dispersion
in processing functionalised PP/TiO2 nanocomposites:
distribution and properties, J. Nanopart. Res., 13 (2011)
1115–1124.
- M. Altan, H. Yildirim, Mechanical and morphological
properties of polypropylene and high-density polyethylene
matrix composites reinforced with surface modified nano
sized TiO2 particles, World Acad. Sci. Eng. Technol., 4 (2010)
289–294.
- X.L. García-Montelongo, A. Martínez-de la Cruz, S. Vázquez-Rodríguez, L.M. Torres-Martínez, Photo-oxidative
degradation of TiO2/polypropylene films, Mater. Res. Bull.,
51 (2014) 56–62.
- J. Shang, M. Chai, Y. Zhu, Solid-phase photocatalytic
degradation of polystyrene plastic with TiO2 as photocatalyst,
J. Solid State Chem., 174 (2003) 104–110.
- S. Dinooplal, T. Sunil Jose, C. Rajesh, Solid-phase
photodegradation of polystyrene by nano TiO2 under
ultraviolet radiation, Environ. Nanotechnol. Monit. Manage.,
12 (2019) 100229, doi: 10.1016/j.enmm.2019.100229.
- B. Sarwan, A.D. Acharya, S. Kaur, B. Pare, Visible light
photocatalytic deterioration of polystyrene plastic using
supported BiOCl nanoflower and nanodisk, Eur. Polym. J.,
134 (2020) 109793, doi: 10.1016/j.eurpolymj.2020.109793.
- S. Cho, W. Choi, Solid-phase photocatalytic degradation of
PVC-TiO2 polymer composites, J. Photochem. Photobiol., A,
143 (2001) 221–228.
- Z. Ouyang, Z. Zhang, Y. Jing, L. Bai, M. Zhao, X. Hao, X. Li,
X. Guo, The photo-aging of polyvinyl chloride microplastics
under different UV irradiations, Gondwana Res., 108 (2022)
72–80.
- P.H. Allé, P. Garcia-Muñoz, K. Adouby, N. Keller,
D. Robert, Efficient photocatalytic mineralization of polymethylmethacrylate
and polystyrene nanoplastics by TiO2/β-SiC alveolar foams, Environ. Chem. Lett., 19 (2021) 1803–1808.
- J. Ge, Z. Zhang, Z. Ouyang, M. Shang, P. Liu, H. Li, X. Guo,
Photocatalytic degradation of (micro)plastics using TiO2-based and other catalysts: properties, influencing factor, and
mechanism, Environ. Res., 209 (2022) 112729, doi: 10.1016/j.envres.2022.112729.
- T.S. Tofa, K.L. Kunjali, S. Paul, J. Dutta, Visible light
photocatalytic degradation of microplastic residues with zinc
oxide nanorods, Environ. Chem. Lett., 17 (2019) 1341–1346.
- T.S. Tofa, F. Ye, K.L. Kunjali, J. Dutta, Enhanced visible light
photodegradation of microplastic fragments with plasmonic
platinum/zinc oxide nanorod photocatalysts, Catalysts,
9 (2019) 819, doi: 10.3390/catal9100819.
- M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, V. Barbieri,
C. Siligardi, E.I. Cedillo-González, New strategy for microplastic
degradation: green photocatalysis using a proteinbased
porous N-TiO2 semiconductor, Ceram. Int., 45 (2019)
9618–9624.
- G. Liu, S. Liao, D. Zhu, J. Cui, W. Zhou, Solid-phase
photocatalytic degradation of polyethylene film with
manganese oxide OMS-2, Solid State Sci., 13 (2011) 88–94.
- R. Jiang, G. Lu, Z. Yan, J. Liu, D. Wu, Y. Wang, Microplastic
degradation by hydroxy-rich bismuth oxychloride, J. Hazard.
Mater., 405 (2021) 124247, doi: 10.1016/j.jhazmat.2020.124247.
- L. Ding, X. Yu, X. Guo, Y. Zhang, Z. Ouyang, P. Liu, C. Zhang,
T. Wang, H. Jia, L. Zhu, The photodegradation processes
and mechanisms of polyvinyl chloride and polyethylene
terephthalate microplastic in aquatic environments:
important role of clay minerals, Water Res., 208 (2022) 117879,
doi: 10.1016/j.watres.2021.117879.
- B. Cao, S. Wan, Y. Wang, H. Guo, M. Ou, Q. Zhong, Highly
efficient visible-light driven photocatalytic H2 evolution
integrated with microplastic degradation over MXene/ZnxCd1–xS photocatalyst, J. Colloid Interface Sci., 605 (2022)
311–319.
- R.K. Upadhyay, N. Soin, S.S. Roy, Role of graphene/metal oxide
composites as photocatalysts, adsorbents and disinfectants in
water treatment: a review, RSC Adv., 4 (2014) 3823–3851.
- I. Uogintė, S. Pleskytė, M. Skapas, S. Stanionytė, G. Lujanienė,
Degradation and optimization of microplastic in aqueous
solutions with graphene oxide‑based nanomaterials, Int. J.
Environ. Sci. Technol., 20 (2023) 9693–9706.
- J. Kang, L. Zhou, X. Duan, H. Sun, Z. Ao, S. Wang,
Degradation of cosmetic microplastics via functionalized
carbon nanosprings, Matter, 1 (2019) 745–758.
- H. Eskandarloo, A. Kierulf, A. Abbaspourrad, Light-harvesting synthetic nano-and micromotors: a review,
Nanoscale, 9 (2017) 12218–12230.
- S. Hermanová, M. Pumera, Micromachines for microplastics
treatment, ACS Nanosci., 2 (2022) 225–232.
- L. Wang, A. Kaeppler, D. Fischer, J. Simmchen, Photocatalytic
TiO2 micromotors for removal of microplastics and suspended
matter, ACS Appl. Mater. Interfaces, 11 (2019) 32937–32944.