References

  1. G. Marcì, E.I. García-López, L. Palmisano, Chapter 20 – Fine Chemistry by TiO2 Heterogeneous Photocatalysis, F. Parrino, L. Palmisano, Eds., Titanium Dioxide (TiO2) and Its Applications, 2021, pp. 609–635.
  2. R. Krakowiak, J. Musial, P. Bakun, M. Spychała, B. Czarczynska-Goslinska, D.T. Mlynarczyk, T. Koczorowski, L. Sobotta, B. Stanisz, T. Goslinski, Titanium dioxide-based photocatalysts for degradation of emerging contaminants including pharmaceutical pollutants, Appl. Sci., 11 (2021) 8674, doi: 10.3390/app11188674.
  3. S.J. Olusegun, T.G.F. Souza, G. de O. Souza, M. Osial, N.D.S. Mohallem, V.S.T. Ciminelli, P. Krysinski, Iron-based materials for the adsorption and photocatalytic degradation of pharmaceutical drugs: a comprehensive review of the mechanism pathway, J. Water Process Eng., 51 (2023) 103457, doi: 10.1016/j.jwpe.2022.103457.
  4. A. Bazargan, Ed., Photocatalytic Water and Wastewater Treatment, IWA Publishing, London, 2022.
  5. C.S. Uyguner-Demirel, N.C. Birben, M. Bekbolet, Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: a review, Catal. Today, 284 (2017) 202–214.
  6. M. Rajca, NOM (HA and FA) reduction in water using nano titanium dioxide photocatalysts (P25 and P90) and membranes, Catalysts, 10 (2020) 249, doi: 10.3390/catal10020249.
  7. M. Rajca, The effectiveness of removal of NOM from natural water using photocatalytic membrane reactors in PMR-UF and PMR-MF modes, Chem. Eng. J., 305 (2016) 169–175.
  8. W. XI, S.-u. Geissen, Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration, Water Res., 35 (2001) 1256–1262.
  9. C. Ullmann, F. Babick, M. Stintz, Microfiltration of submicron-sized and nano-sized suspensions for particle size determination by dynamic light scattering, Nanomaterials, 9 (2019) 829, doi: 10.3390/nano9060829.
  10. Ewonik Industries AG, Essen, Germany, Product Information, Aeroxide® P25 and P90.
  11. S.J. Vitton, L.Y. Sadler, Particle-size analysis of soils using laser light scattering and X-ray absorption technology, Geotech. Test J., 20 (1997) 63–73.
  12. G.B.J. de Boer, C. de Weerd, D. Thoenes, H.W.J. Goossens, Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering, Part. Part. Syst. Charact., 4 (1987) 14–19.
  13. G. Bushell, Forward light scattering to characterise structure of flocs composed of large particles, Chem. Eng. J., 11 (2005) 145–149.
  14. https://www.sigmaaldrich.com/PL/pl/product/aldrich/718467 (Acc. July 2023).
  15. D. Lin, S. Drew Story, S.L. Walker, Q. Huang, P. Cai, Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles, Water Res., 104 (2016) 381–388.
  16. F. Xu, Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization, Chemosphere, 212 (2018) 662–677.
  17. R.T. Bray, K. Fitobór, Sizes of iron hydroxide particles formed during ferric coagulation processes, Desal. Water Treat., 64 (2017) 419–424.