References

  1. A. Król, K. Mizerna, M. Bożym, An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag, J. Hazard. Mater., 384 (2020) 121502, doi: 10.1016/j.jhazmat.2019.121502.
  2. T.T.T. Dung, A. Golreihan, E. Vassilieva, N.K. Phung, V. Cappuyns, R. Swennen, Insights into solid phase characteristics and release of heavy metals and arsenic from industrial sludge via combined chemical, mineralogical, and microanalysis, Environ. Sci. Pollut. Res., 22 (2015) 2205–2218.
  3. T. Wang, L. Yang, F. Rao, K. Jiang, C. Byrynnai, Effect of chitosan on the mechanical properties and acid resistance of metakaolinblast furnance slag-based geopolymers, Environ. Sci. Pollut. Res. Int., 16 (2023) 47025–47037.
  4. B.F. Belov, A.Ya. Babanin, Nanostructural analysis and adsorption capacity of blast-furnace slags, Metallurgist, 66 (2022) 445–450.
  5. N.-H. Yin, Y. Sivry, F. Guyot, P.N.L. Lens, E.D. van Hullebusch, Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags, J. Environ. Manage., 180 (2016) 310–323.
  6. M. Alwaeli, J. Golaszewski, J. Pizon, A. Andrzejewska, P. Szwan, K. Ceglarz, W. Buchta, T. Jachnik, J. Zlotos, Metallurgical sludge as sand replacement and constituent of crushed concrete aggregate, IOP Conf. Ser.: Mater. Sci. Eng., 603 (2019) 032087, doi: 10.1088/1757-899X/603/3/032087.
  7. A.V. Maiorova, T.V. Kulikova, A.B. Shubin, Extraction of zinc and arsenic from metallurgical furnace dust, JOM, 73 (2021) 3588–3596.
  8. S. Różański, Fractionation of selected heavy metals in agricultural soils, Ecol. Chem. Eng. S, 20 (2013) 117–125.
  9. S.-K. Seo, C.-M. Kwon, F.S. Kim, C.-J. Lee, Experiment and kinetic modeling for leaching of blast furnace slag using ligand, J. CO2 Util., 27 (2018) 188–195.
  10. X. Wang, J. Chen, X. Yan, X. Wang, J. Zhang, J. Huang, J. Zhao, Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid, J. Ind. Eng. Chem., 27 (2015) 368–372.
  11. C.-Y. Kuo, C.-H. Wu, S.-L. Lo, Removal of copper from industrial sludge by traditional and microwave acid extraction, J. Hazard. Mater., 120 (2005) 249–256.
  12. U.S. Mohanty, L. Rintala, P. Halli, P. Taskinen, M. Lundström, Hydrometallurgical approach for leaching of metals from copper rich side stream originating from base metal production, Metals, 40 (2018) 8, doi: 10.3390/met8010040.
  13. R.K. Nadirov, L.I. Syzdykova, A.K. Zhussupova, M.T. Usserbaev, Recovery of value metals from copper smelter slag by ammonium chloride treatment, Int. J. Miner. Process., 124 (2013) 145–149.
  14. Z. Ye, S. Hong, C. He, Y. Zhang, Y. Wang, H. Zhu, H. Hou, Evaluation of different factors on metal leaching from nickel tailings using generalized additive model (GAM), Ecotoxicol. Environ. Saf., 236 (2022) 113488, doi: 10.1016/j.ecoenv.2022.113488.
  15. Z. Ding, Q. Wang, X. Hu, Extraction of heavy metals from water-stable soil aggregates using EDTA, Procedia Environ. Sci., 18 (2013) 679–685.
  16. T. Van Gerven, H.C., K. Imbrechts, K. Hindrix, C. Vandecasteele, Extraction of heavy metals from municipal solid waste incinerator (MSWI) bottom ash with organic solutions, J. Hazard. Mater., 140 (2007) 376–381.
  17. H.A. Van Der Sloot, D.S. Kosson, Leaching Assessment Methodologies for Disposal and Use of Bauxite Residues, Research Report for the International Aluminium Institute (IAI), London, UK, 2010.
  18. A.H. Khalil, S.S. Alquzweeni, H.M. Modhloom, Removal of copper ions from contaminated soil by enhanced soil washing, Int. J. Environ. Res., 4 (2015) 1141–1146.
  19. B. Sun, F.J. Zhao, E. Lombi, S.P. McGrath, Leaching of heavy metals from contaminated soils using EDTA, Environ. Pollut., 113 (2001) 111–120.
  20. A. Polettini, R. Pomi, E. Rolle, D. Ceremigna, L. De Propris, M. Gabellini, A. Tornato, A kinetic study of chelant-assisted remediation of contaminated dredged sediment, J. Hazard. Mater., 137 (2006) 1458–1465.
  21. B. Karwowska, Optimalization of metals ions extraction from industrial wastewater sludge with chelating agents, Arch. Environ. Prot., 4 (2012) 15–21.
  22. J. Zheng, X. Zhang, G. Li, G. Fei, P. Jin, Y. Liu, C. Wouters, G. Meir, Y. Li, B. Van der Bruggen, Selective removal of heavy metals from saline water by nanofiltration, Desalination, 525 (2022) 115380, doi: 10.1016/j.desal.2021.115380.
  23. B.A.M. Al-Rashdi, D.J. Johnson, N. Hilal, Removal of heavy metal ions by nanofiltration, Desalination, 315 (2013) 2–17.
  24. L.B. Chaudhari, Z.V.P. Murthy, Treatment of landfill leachates by nanofiltration, J. Environ. Manage., 91 (2010) 1209–1217.
  25. G.T. Ballet, L. Gzara, A. Hafiane, M. Dhahbi, Transport coefficients and cadmium salt rejection in nanofiltration membrane, Desalination, 167 (2004) 369–376.
  26. M. Kruk, Comparison of Digestion Methods of Slag Samples From Zinc and Lead Industry to Identify the Content of Selected Metals, Edukacja a wyzwania nauki i technologii, G. Wiciak, K. Szykowska, Eds., Łódź, 2022 (in Polish).
  27. L.J. Wei, O.T. Haan, T.C.S. Yaw, L.C. Abdullah, M.A. Razak, T. Cionita, A. Toudehdehghan, Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching, E3S Web Conf., 34 (2018) 02007, doi: 10.1051/e3sconf/20183402007.
  28. K. Lewińska, A. Karczewska, M. Siepak, B. Gałka, M. Stysz, C. Kaźmierowski, Recovery and leachability of antimony from mine- and shooting range soils, J. Elementol., 22 (2017) 79–90.
  29. Q. Liu, S.-y. Yang, Y.-m. Chen, J. He, H.-t. Xue, Selective recovery of lead from zinc oxide dust with alkaline Na2EDTA solution, Trans. Nonferrous Met. Soc. China, 24 (2014) 1179–1186.
  30. R. Qiu, Z. Zou, Z. Zhao, W. Zhang, T. Zhang, H. Dong, X. Wei, Removal of trace and major metals by soil washing with Na2EDTA and oxalate, J. Soils Sediments, 10 (2010) 45–53.
  31. G. Rauret, J.F. López-Sánchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure, Ph. Quevauviller, Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, J. Environ. Monit., 1 (1999) 57–61.
  32. M. Nocoń, I. Korus, K. Loska, Quantitative and qualitative analysis of slags from zinc and lead metallurgy, Arch. Environ. Prot., 49 (2023) 26–37.
  33. P.K. Andrew Hong, C. Li, S.K. Banerji, T. Regmi, Extraction, recovery, and biostability of EDTA for remediation of heavy metal-contaminated soil, J. Soil Contam., 8 (1999) 81–103.
  34. N. Finzgar, D. Lestan, The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution, Chemosphere, 73 (2008) 1484–1491.
  35. P. Hu, B. Yang, C. Dong, L. Chen, X. Cao, J. Zhao, L. Wu, Y. Luo, P. Christie, Assessment of EDTA heap leaching of an agricultural soil highly contaminated with heavy metals, Chemosphere, 117 (2014) 532–537.
  36. L. Hauser, S. Tandy, R. Schulin, B. Nowack, Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS, Environ. Sci. Technol., 39 (2005) 6819–6824.
  37. A.E. Martell, R.M. Smith, R.J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes, NIST Standard Reference Database 46, MD, Gaithersburg, 2001.
  38. H.A. Elliott, G.A. Brown, Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils, Water Air Soil Pollut., 45 (1989) 361–369.
  39. A. Sungur, M. Soylak, H. Ozcan, Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability, Chem. Speciation Bioavailability, 26 (2014) 219–230.
  40. A.J. Zimmerman, D.C. Weindorf, Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedures, Int. J. Anal. Chem., 2010 (2010) 387803, doi: 10.1155/2010/387803.
  41. M. Bodzek, Application of membrane techniques for the removal of micropollutants from water and wastewater, Copernican Letters, 6 (2015) 24–33.