References

  1. F. Amalina, A.S.A. Razak, S. Krishnan, A.W. Zularisam, M. Nasrullah, Dyes removal from textile wastewater by agricultural waste as an absorbent – a review, Cleaner Waste Syst., 3 (2022) 100051, doi: 10.1016/j.clwas.2022.100051.
  2. T.A. Aragaw, F.M. Bogale, Role of coagulation/flocculation as a pretreatment option to reduce colloidal/bio-colloidal fouling in tertiary filtration of textile wastewater: a review and future outlooks, Front. Environ. Sci., 11 (2023) 1142227, doi: 10.3389/fenvs.2023.1142227.
  3. N. Bhargava, N. Bahadur, A. Kansal, Techno-economic assessment of integrated photochemical AOPs for sustainable treatment of textile and dyeing wastewater, J. Water Process Eng., 56 (2023) 104302, doi: 10.1016/j.jwpe.2023.104302.
  4. M. Bilińska, L. Bilińska, M. Gmurek, Homogeneous and heterogeneous catalytic ozonation of textile wastewater: application and mechanism, Catalysts, 13 (2023) 6, doi: 10.3390/catal13010006.
  5. L.A. Castillo-Suárez, A.G. Sierra-Sánchez, I. Linares-Hernández, V. Martínez-Miranda, E.A. Teutli-Sequeira, A critical review of textile industry wastewater: green technologies for the removal of indigo dyes, Int. J. Environ. Sci. Technol., 20 (2023) 10553–10590.
  6. E.B. Ingrassia, E.S. Lemos, L.B. Escudero, Treatment of textile wastewater using carbon-based nanomaterials as adsorbents: a review, Environ. Sci. Pollut. Res., 30 (2023) 91649–91675.
  7. N. Jahan, M. Tahmid, A.Z. Shoronika, A. Fariha, H. Roy, N. Pervez, Y. Cai, V. Naddeo, M.S. Islam, A comprehensive review on the sustainable treatment of textile wastewater: zero liquid discharge and resource recovery perspectives, Sustainability (Switzerland), 14 (2022) 15398, doi: 10.3390/su142215398.
  8. P. Jin, J. Zheng, Q. Gao, A.K. An, J. Zhu, B. Van der Bruggen, Loose nanofiltration membranes for the treatment of textile wastewater: a review, J. Membr. Sci. Res., 8 (2022) 538529, doi: 10.22079/JMSR.2022.538529.1492.
  9. C.G. Malar, K. Sathya, S. Rajalakshmi, P.R. Lakshmi, A critical analysis of the nanotechnology-based approach in textile wastewater treatment, Nanotechnol. Environ. Eng., 8 (2023) 535–548.
  10. G. Nair, B. Soni, M. Shah, A comprehensive review on electro-oxidation and its types for wastewater treatment, Groundwater Sustainable Dev., 23 (2023) 100980, doi: 10.1016/j.gsd.2023.100980.
  11. S. Najari, M. Delnavaz, D. Bahrami, Application of electrocoagulation process for the treatment of reactive blue 19 synthetic wastewater: evaluation of different operation conditions and financial analysis, Chem. Phys. Lett., 832 (2023) 140897, doi: 10.1016/j.cplett.2023.140897.
  12. P.V. Nidheesh, G. Divyapriya, F. Ezzahra Titchou, M. Hamdani, Treatment of textile wastewater by sulfate radical based advanced oxidation processes, Sep. Purif. Technol., 293 (2022) 121115, doi: 10.1016/j.seppur.2022.121115.
  13. A.S. Reddy, S. Kalla, Z.V.P. Murthy, Textile wastewater treatment via membrane distillation, Environ. Eng. Res., 27 (2022) 210228, doi: 10.4491/eer.2021.228.
  14. L. Rendón-Castrillón, M. Ramírez-Carmona, C. Ocampo-López, F. González-López, B. Cuartas-Uribe, J.A. Mendoza-Roca, Treatment of water from the textile industry contaminated with indigo dye: a hybrid approach combining bioremediation and nanofiltration for sustainable reuse, Case Stud. Chem. Environ. Eng., 8 (2023) 100498, doi: 10.1016/j.cscee.2023.100498.
  15. H. Tiwari, R.K. Sonwani, R.S. Singh, Bioremediation of dyes: a brief review of bioreactor performance, Environ. Technol. Rev., 12 (2023) 83–128.
  16. V. Vaiano, I. De Marco, Removal of azo dyes from wastewater through heterogeneous photocatalysis and supercritical water oxidation, Separations, 10 (2023) 230, doi: 10.3390/separations10040230.
  17. M. Yaqub, M.D. Celebi, M. Dilaver, S.K. Bhagat, M. Kobya, W. Lee, Treating textile wastewater to achieve zero liquid discharge: a comprehensive techno-economic analysis, Water Air Soil Pollut., 234 (2023) 651, doi: 10.1007/s11270-023-06646-5.
  18. L. Xu, Z. Pang, H. Yu, M. Guo, X. Yan, X. Jiang, L. Yu, Antifouling loose nanofiltration membranes prepared via the fast co-deposition of capsaicin-mimic/polydopamine for efficient dye/salt separation, Desalination, 565 (2023) 116809, doi: 10.1016/j.desal.2023.116809.
  19. L. Wang, M. Zhang, Y. Shu, Q. Han, B. Chen, B. Liu, Z. Wang., C.Y. Tang, Precisely regulated in-plane pore sizes of Co-MOF nanosheet membranes for efficient dye recovery, Desalination, 567 (2023) 116979, doi: 10.1016/j.desal.2023.116979.
  20. S. Shang, G. Xiao, C. Chen, C. Chen, R. Li, Z. Yang, M. Cao, R. Zou, Y. Tang, Constructed “sandwich” structure to obtain recyclability and high rejection rate high-flux CA@ HMSN@h-BN/PDA membrane for efficient treatment of dye wastewater, Colloids Surf., A, 675 (2023) 132023, doi: 10.1016/j.colsurfa.2023.132023.
  21. A. Ahsan, F. Jamil, M.A. Rashad, M. Hussain, A. Inayat, P. Akhter, A.H. Al-Muhtaseb, K.-Y.A. Lin, Y.K. Park, Wastewater from the textile industry: review of the technologies for wastewater treatment and reuse, Korean J. Chem. Eng., 40 (2023) 2060–2081.
  22. D. Christian, A. Gaekwad, H. Dani, M.A. Shabiimam, A. Kandya, Recent techniques of textile industrial wastewater treatment: a review, Mater. Today Proc., 77 (2023) 277–285.
  23. A. Azanaw, B. Birlie, B. Teshome, M. Jemberie, Textile effluent treatment methods and eco-friendly resolution of textile wastewater, Case Stud. Chem. Environ. Eng., 6 (2022) 100230, doi: 10.1016/j.cscee.2022.100230.
  24. I. Ćurić, D. Dolar, Investigation of pretreatment of textile wastewater for membrane processes and reuse for washing dyeing machines, Membranes, 12 (2022) 449, doi: 10.3390/membranes12050449.
  25. M.D. Çelebi, M. Dilaver, M. Kobya, A study of inline chemical coagulation/precipitation-ceramic microfiltration and nanofiltration for reverse osmosis concentrate minimization and reuse in the textile industry, Water Sci. Technol., 84 (2021) 2457–2471.
  26. Y. Okamoto, J.H. Lienharda, How RO membrane permeability and other performance factors affect process cost and energy use: a review, Desalination, 470 (2019) 114064, doi: 10.1016/j.desal.2019.07.004
  27. D. Zarzo, D. Prats, Desalination and energy consumption. What can we expect in the near future?, Desalination, 427 (2018), doi: 10.1016/j.desal.2017.10.046.
  28. R. Partal, I. Basturk, S.M. Hocaoglu, A. Baban, E. Ecem Yilmaz, Recovery of water and reusable salt solution from reverse osmosis brine in textile industry: a case study, Water Resour. Ind., 27 (2022) 100174, doi: 10.1016/j.wri.2022.100174.
  29. N.B. Amar, N. Kechaou, J. Palmeri, A. Deratani, A. Sghaier, Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry, J. Hazard. Mater., 170 (2009) 111–117.
  30. D.M. Davenport, A. Deshmukh, J.R. Werber, M. Elimelech, High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: current status, design considerations, and research needs. Environ. Sci. Technol. Lett., 5 (2018) 467–475.
  31. A.J. Karabelas, C.P. Koutsou, M. Kostoglou, D.C. Sioutopoulos, Analysis of specific energy consumption in reverse osmosis desalination processes, Desalination, 431 (2018) 15–21.
  32. Y. Li, E.R. Thomas, M. Hernandez Molina, S. Mann, W.S. Walker, M.L. Lind, F. Perreault, Desalination by membrane pervaporation: a review, Desalination, 547 (2023) 116223, doi: 10.1016/j.desal.2022.116223.
  33. W. Kaminski, J. Marszałek, E. Tomczak, Water desalination by pervaporation – comparison of energy consumption, Desalination, 433 (2018) 89–93.
  34. A. Basile, A. Figoli, M. Khayet, Pervaporation, Vapour Permeation and Membrane Distillation, Woodhead Publishing Series in Energy, 2015.
  35. T. Zhu, Q. Xia, J. Zuo, S. Liu, X. Yu, Y. Wang, Recent advances of thin film composite membranes for pervaporation applications: a comprehensive review, Adv. Membranes, 1 (2021) 100008, doi: 10.1016/j.advmem.2021.100008.
  36. R. Żyłła, J. Sójka-Ledakowicz, K. Michalska, L. Kos, S. Ledakowicz, Effect of UV/H2O2 oxidation on fouling in textile wastewater nanofiltration, Fibres Text. East. Eur., 20 (2012) 99–104.
  37. J. Marszałek, R. Żyłła, Recovery of water from textile dyeing using membrane filtration processes, Processes, 9 (2021) 1833, doi: 10.3390/pr9101833.
  38. R. Żyłła, M. Foszpańczyk, I. Kamińska, M. Kudzin, J. Balcerzak, S. Ledakowicz, Impact of polymer membrane properties on the removal of pharmaceuticals, Membranes, 12, (2022) 150, doi: 10.3390/membranes12020150.
  39. L. Cui, G. Carl, G. Wa, B.W. Liao, Effect of cold water temperature on membrane structure and properties, J. Membr. Sci., 540 (2017) 19–26.
  40. R.R. Sharma, R. Agrawal, S. Chellam, Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters, J. Membr. Sci., 223 (2003) 69–87.
  41. A. Tikka, W. Gao, B. Liao, Reversibility of membrane performance and structure changes caused by extreme cold water temperature and elevated conditioning water temperature, Water Res., 151 (2019) 260–270.
  42. B. Xu, W. Gao, B. Liao, W. Turek, The influence of temperature on dynamic membrane structure, J. Membr. Sci., 688 (2023) 122121, doi: 10.1016/j.memsci.2023.122121.
  43. K. Kosutic, D. Dolar, D. Asperger, B. Kunst, Removal of antibiotics from a model wastewater by RO/NF membranes, Sep. Purif. Technol., 53 (2007) 244–249.
  44. D. Dolar, K. Kosutic, B. Vučić, RO/NF treatment of wastewater from fertilizer factory - removal of fluoride and phosphate, Desalination, 265 (2011) 237–241.
  45. D. Dolar, S. Pelko, K. Košutić, A.J. Horvat, Removal of anthelmintic drugs and their photodegradation products from water with RO/NF membranes, Process Saf. Environ. Prot., 90 (2012) 147–152.
  46. J.V. Nicolini, C.P. Borges, H.C. Ferraz, Selective rejection of ions and correlation with surface properties of nanofiltration membranes, Sep. Purif. Technol., 171 (2016) 238–247.
  47. E.I. Mouhoumed, A. Szymczyk, A. Schäfer, L. Paugam, Y.H. La, Physico-chemical characterization of polyamide NF/RO membranes: insight from streaming current measurements, J. Membr. Sci., 461 (2014) 130–138.
  48. N. Hilal, H. Al-Zoubi, N. Darwish, A.W. Mohammad, Characterisation of nanofiltration membranes using atomic force microscopy, Desalination, 177 (2005) 187–199.
  49. J.M. Gozálvez-Zafrilla, D. Sanz-Escribano, J.C. García, Nanofiltration of secondary effluent for wastewater reuse in the textile industry, Desalination, 222 (2008) 272–279.
  50. K. Boussu, A. Belpaire, A. Volodin, C. Van Haesendonck, P. Van der Meeren, C. Vandecasteele, B. Van der Bruggen, Influence of membrane and colloid characteristics on fouling of nanofiltration membranes, J. Membr. Sci., 289 (2007) 220–230.
  51. G. Cornelis, B. Van der Bruggen, C. Vandecasteele, I. Devreese, Fouling of nanofiltration and T membranes applied for wastewater regeneration in the textile industry, Desalination, 175 (2005) 111–119.
  52. A.S. Chugunov, V.A. Vinnitskii, K.V. Stepanyuk, Effect of the sodium chloride–magnesium chloride ratio on the separation of salts using a nanofiltration membrane, Membr. Membr. Technol., 3 (2021) 192–197.
  53. M. Qadir, G. Sposito, C.J. Smith, J.D. Oster, Reassessing irrigation water quality guidelines for sodicity hazard, Agric. Water Manage., (2021) 107054, doi: 10.1016/j.agwat.2021.107054.
  54. R.F. Nunes, H. Conceição Ferraz, F. de Araujo Kronemberger, Interaction between surfactants of different classes and nanofiltration membranes, Sci. Plena, 18 (2022) 11420, doi: 10.14808/sci.plena.2022.11420.
  55. A. Yusaf, M. Usman, M. Ibrahim, A. Mansha, A. ul Haq, H.F. Rehman, M. Ali, Mixed micellar solubilization for procion blue MxR entrapment and optimization of necessary parameters for micellar enhanced ultrafiltration, Chemosphere, 313 (2023) 137320, doi: 10.1016/j.chemosphere.2022.137320.
  56. Y.-H. Tong, Y. Wu, Z. Xu, L.-H. Luo, R. Jia, R. Han, S.-J. Xu, Hydrolysis co-deposition of bio-inspired hybrid hydrophilic network antifouling loose nanofiltration membrane for effective dye/salt separation, J. Membr. Sci., (2023), doi: 10.2139/ssrn.4638997.