References

  1. E. Zaveri, R. Damania, N. Egle, Droughts and Deficits - Summary Evidence of the Global Impact on Economic Growth, World Bank Group, Washington, USA, 2023.
  2. United Nations Educational, Scientific and Cultural Organization, The United Nations World Water Development Report 2020, Water and Climate Change, Paris, 2020.
  3. B. Tomaszewska, G.G. Akkurt, M. Kaczmarczyk, W. Bujakowski, N. Keles, Y.A. Jarma, A. Baba, M. Bryjak, N. Kabay, Utilization of renewable energy sources in desalination of geothermal water for agriculture, Desalination, 513 (2021) 115151, doi: 10.1016/j.desal.2021.115151.
  4. J. El Kharraz, A. El-Sadek, N. Ghaffour, E. Mino, Water scarcity and drought in WANA countries, Procedia Eng., 33 (2012) 14–29.
  5. N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen, Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems, Desalination, 356 (2015) 94–114.
  6. U. Caldera, C. Breyer, Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future, Water Resour. Res., 53 (2017) 10523–10538.
  7. N.C. Darre, G.S. Toor, Desalination of water: a review, Curr. Pollut. Rep., 4 (2018) 104–111.
  8. J. Bundschuh, M. Kaczmarczyk, N. Ghaffour, B. Tomaszewska, State-of-the-art of renewable energy sources used in water desalination: present and future prospects, Desalination, 508 (2021) 115035, doi: 10.1016/j.desal.2021.115035.
  9. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang, The state of desalination and brine production: a global outlook, Sci. Total Environ., 657 (2019) 1343–1356.
  10. T. Ahmad, D. Zhang, Ch. Huang, H. Zhang, N. Dai, Y. Song, H. Chen, Artificial intelligence in sustainable energy industry: status Quo, challenges and opportunities, J. Cleaner Prod., 289 (2021) 125834, doi: 10.1016/j.jclepro.2021.125834.
  11. V.G. Gude, Geothermal source potential for water desalination – current status and future perspective, Renewable Sustainable Energy Rev., 57 (2016) 1038–1065.
  12. H. Mahmoudi, N. Ghaffour, M. Goosen, J. Bundschuh, Renewable Energy Technologies for Water Desalination, Series: Sustainable Water Developments, Taylor & Francis Group, London, UK, 2017.
  13. N. Ghaffour, S. Soukane, J.-G. Lee, Y. Kim, A. Alpatova, Membrane distillation hybrids for water production and energy efficiency enhancement: a critical review, Appl. Energy, 254 (2019) 113698, doi: 10.1016/j.apenergy.2019.113698.
  14. H. Nassrullah, S.F. Anis, R. Hashaikeh, N. Hilal, Energy for desalination: a state-of-the-art review, Desalination, 491 (2020) 114569, doi: 10.1016/j.desal.2020.114569.
  15. K. Bourouni, M.T. Chaibi, L. Tadrist, Water desalination by humidification and de-humidification of air: state of the art, Desalination, 137 (2001) 167–176.
  16. L. Rizzutti, H.M. Ettouney, Solar Desalination for the 21st Century: A Review of Modern Technologies and Researches on Desalination Coupled to Renewable Energies, Springer, Dordrecht, 2007.
  17. H.M. Qiblawey, F. Banat, Solar thermal desalination technologies, Desalination, 220 (2008) 633–644.
  18. M. Goosen, H. Mahmoudi, N. Ghaffour, Today’s and future challenges in applications of renewable energy technologies for desalination, Crit. Rev. Environ. Sci. Technol., 44 (2014) 929–999.
  19. A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane technology in renewable-energy-driven desalination, Renewable Sustainable Energy Rev., 81 (2018) 1–21.
  20. B. Tomaszewska, G.G. Akkurt, M. Kaczmarczyk, A. Kasztelewicz, M. Mukti, H.B. Gural, Y.A. Jarma, A. Baba, N. Kabay, Renewable Energy Sources Utilized for Membrane Desalination Processes, L.F. Dumée, M. Sadrzadeh, M.M.A. Shirazi, Eds., Green Membrane Technologies Towards Environmental Sustainability, Elsevier, Amsterdam, Oxford, Cambridge, 2023, pp. 371–414.
  21. Y.-C. Tsai, C.-P. Chiu, F.-K. Ko, T.-C. Chen, J.-T. Yang, Desalination plants and renewables combined to solve power and water issues, Energy, 113 (2016) 1018–1030.
  22. M. Kaczmarczyk, B. Tomaszewska, W. Bujakowski, Innovative desalination of geothermal wastewater supported by electricity generated from low-enthalpy geothermal resources, Desalination, 524 (2022) 115450, doi: 10.1016/j.desal.2021.115450.
  23. K.W. Know, Y.W. Wong, R.K. Rajkumar, R.K. Rajkumar, A review on performance of artificial intelligence and conventional method in mitigating PV grid-tied related power quality events, Renewable Sustainable Energy Rev., 56 (2016) 334–346.
  24. A.H. Sodhro, S. Pirbhulal, V.H.C. De Albuquerque, Artificial intelligence-driven mechanism for edge computing-based industrial applications, IEEE Trans. Ind. Inf., 15 (2019) 4235–4243.
  25. D.K. Ranaweera, G.G. Karady, R.G. Farmer, Economic impact analysis of load forecasting, IEEE Trans. Power Syst., 12 (1997) 1388–1392.
  26. Y. Ren, P.N. Suganthan, N. Srikanth, A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods, IEEE Trans. Sustainable Energy, 6 (2015) 236–244.
  27. F. Rodríguez, A. Fleetwood, A. Galarza, L. Fontán, Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control, Renewable Energy, 126 (2018) 855–864.
  28. K.B. Debnath, M. Mourshed, Forecasting methods in energy planning models, Renewable Sustainable Energy Rev., 88 (2018) 297–325.
  29. E.T. Sayed, A.G. Olabi, K. Elsadi, M. Al Radi, C. Semeraro, M.H. Doranehgard, M.E. Eltayeb, A. Abdelkareem, Application of artificial intelligence techniques for modeling, optimizing, and controlling desalination systems powered by renewable energy resources, J. Cleaner Prod., 413 (2023) 137486, doi: 10.1016/j.jclepro.2023.137486.
  30. N.I. Santos, A.M. Said, D.E. James, N.H. Venkatesh, Modeling solar still production using local weather data and artificial neural networks, Renewable Energy, 40 (2012) 71–79.
  31. A.F. Mashaly, A. Alazba, A. Al-Awaadh, M.A.J.S.E. Mattar, Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment, Sol. Energy, 118 (2015) 41–58.
  32. A.F. Mashaly, A.A. Alzaba, MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper-arid environment, Comput. Electron. Agric., 122 (2016) 146–155.
  33. A.F. Mashaly, A.J.S.E. Alazba, Thermal performance analysis of an inclined passive solar still using agricultural drainage water and artificial neural network in arid climate, Sol. Energy, 153 (2017) 383–395.
  34. F.A. Essa, M. Abd Elaziz, A.H. Elsheikh, An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer, Appl. Therm. Eng., 170 (2020) 115020, doi: 10.1016/j.applthermaleng.2020.115020.
  35. H. Salem, A.E. Kabeel, E.M.S. El-Said, O.M. Elzeki, Predictive modelling for solar power-driven hybrid desalination system using artificial neural network regression with Adam optimization, Desalination, 522 (2022) 115411, doi: 10.1016/j.desal.2021.115411.
  36. H. Salem, I.M. El-Hasnony, A.E. Kabeel, E.M.S. El-Said, O.M. Elzeki, Deep learning model and classification explainability of renewable energy-driven membrane desalination system using evaporative cooler, Alexandria Eng. J., 61 (2022b) 10007–10024.
  37. R. Porrazzo, A. Cipollina, M. Galuzzo, G. Micale, A neural network-based optimizing control system for a seawaterdesalination solar-powered membrane distillation unit, Comput. Chem. Eng., 54 (2013) 79–96.
  38. S. Lee, S. Myung, J. Hong, D.J.D. Har, Reverse osmosis desalination process optimized for maximum permeate production with renewable energy, Desalination, 398 (2016) 133–143.
  39. P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven SWRO desalination prototype with and without batteries: a performance simulation using machine learning models, Desalination, 435 (2018) 77–96.
  40. A. Al-Alawi, S.M. Al-Alawi, S.M. Islam, Predictive control of an integrated PV-diesel water and power supply system using an artificial neural network, Renewable Energy, 32 (2007) 1426–1439.
  41. Q. Li, J. Loy-Benitez, K. Nam, S. Hwangbo, J. Rashidi, C.J.E. Yoo, Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks, Energy, 178 (2019) 277–292.
  42. O. Charrouf, A. Betka, S. Abdeddaim, A. Ghamri, Artificial neural network power manager for hybrid PV-wind desalination system, Math. Comput. Simul., 167 (2020) 443–460.
  43. K. Bourouni, T.B. M’Barek, A. Al Taee, Design and optimization of desalination reverse osmosis plants driven by renewable energies using genetic algorithms, Renewable Energy, 36 (2011) 936–950.
  44. A. Maleki, F. Pourfayaz, M.H. Ahmadi, Design of a costeffective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach, Sol. Energy, 139 (2016) 666–675.
  45. A.M. Abdelshafy, H. Hassan, J. Jurasz, Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO–GWO approach, Energy Convers. Manage., 173 (2018) 331–347.
  46. A.J.D. Maleki, Design and optimization of autonomous solarwind- reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm, Desalination, 435 (2018) 221–234.
  47. G. Zhang, B. Wu, A. Maleki, W.J.S.E. Zhang, Simulated annealing-chaotic search algorithm-based optimization of reverse osmosis hybrid desalination system driven by wind and solar, Energies, 173 (2018) 964–975.