References
- E. Zaveri, R. Damania, N. Egle, Droughts and Deficits -
Summary Evidence of the Global Impact on Economic
Growth, World Bank Group, Washington, USA, 2023.
- United Nations Educational, Scientific and Cultural Organization,
The United Nations World Water Development
Report 2020, Water and Climate Change, Paris, 2020.
- B. Tomaszewska, G.G. Akkurt, M. Kaczmarczyk, W. Bujakowski,
N. Keles, Y.A. Jarma, A. Baba, M. Bryjak, N. Kabay, Utilization
of renewable energy sources in desalination of geothermal
water for agriculture, Desalination, 513 (2021) 115151,
doi: 10.1016/j.desal.2021.115151.
- J. El Kharraz, A. El-Sadek, N. Ghaffour, E. Mino, Water scarcity
and drought in WANA countries, Procedia Eng., 33 (2012)
14–29.
- N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen,
Renewable energy-driven desalination technologies: a comprehensive
review on challenges and potential applications of
integrated systems, Desalination, 356 (2015) 94–114.
- U. Caldera, C. Breyer, Learning curve for seawater reverse
osmosis desalination plants: capital cost trend of the past,
present, and future, Water Resour. Res., 53 (2017) 10523–10538.
- N.C. Darre, G.S. Toor, Desalination of water: a review,
Curr. Pollut. Rep., 4 (2018) 104–111.
- J. Bundschuh, M. Kaczmarczyk, N. Ghaffour, B. Tomaszewska,
State-of-the-art of renewable energy sources used in water
desalination: present and future prospects, Desalination,
508 (2021) 115035, doi: 10.1016/j.desal.2021.115035.
- E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang,
The state of desalination and brine production: a global
outlook, Sci. Total Environ., 657 (2019) 1343–1356.
- T. Ahmad, D. Zhang, Ch. Huang, H. Zhang, N. Dai, Y. Song,
H. Chen, Artificial intelligence in sustainable energy industry:
status Quo, challenges and opportunities, J. Cleaner Prod.,
289 (2021) 125834, doi: 10.1016/j.jclepro.2021.125834.
- V.G. Gude, Geothermal source potential for water desalination
– current status and future perspective, Renewable
Sustainable Energy Rev., 57 (2016) 1038–1065.
- H. Mahmoudi, N. Ghaffour, M. Goosen, J. Bundschuh,
Renewable Energy Technologies for Water Desalination, Series:
Sustainable Water Developments, Taylor & Francis Group,
London, UK, 2017.
- N. Ghaffour, S. Soukane, J.-G. Lee, Y. Kim, A. Alpatova,
Membrane distillation hybrids for water production and
energy efficiency enhancement: a critical review, Appl. Energy,
254 (2019) 113698, doi: 10.1016/j.apenergy.2019.113698.
- H. Nassrullah, S.F. Anis, R. Hashaikeh, N. Hilal, Energy for
desalination: a state-of-the-art review, Desalination, 491 (2020)
114569, doi: 10.1016/j.desal.2020.114569.
- K. Bourouni, M.T. Chaibi, L. Tadrist, Water desalination by
humidification and de-humidification of air: state of the art,
Desalination, 137 (2001) 167–176.
- L. Rizzutti, H.M. Ettouney, Solar Desalination for the 21st
Century: A Review of Modern Technologies and Researches
on Desalination Coupled to Renewable Energies, Springer,
Dordrecht, 2007.
- H.M. Qiblawey, F. Banat, Solar thermal desalination
technologies, Desalination, 220 (2008) 633–644.
- M. Goosen, H. Mahmoudi, N. Ghaffour, Today’s and future
challenges in applications of renewable energy technologies
for desalination, Crit. Rev. Environ. Sci. Technol., 44 (2014)
929–999.
- A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane
technology in renewable-energy-driven desalination,
Renewable Sustainable Energy Rev., 81 (2018) 1–21.
- B. Tomaszewska, G.G. Akkurt, M. Kaczmarczyk,
A. Kasztelewicz, M. Mukti, H.B. Gural, Y.A. Jarma, A. Baba,
N. Kabay, Renewable Energy Sources Utilized for Membrane
Desalination Processes, L.F. Dumée, M. Sadrzadeh,
M.M.A. Shirazi, Eds., Green Membrane Technologies Towards
Environmental Sustainability, Elsevier, Amsterdam, Oxford,
Cambridge, 2023, pp. 371–414.
- Y.-C. Tsai, C.-P. Chiu, F.-K. Ko, T.-C. Chen, J.-T. Yang,
Desalination plants and renewables combined to solve power
and water issues, Energy, 113 (2016) 1018–1030.
- M. Kaczmarczyk, B. Tomaszewska, W. Bujakowski, Innovative
desalination of geothermal wastewater supported by electricity
generated from low-enthalpy geothermal resources,
Desalination, 524 (2022) 115450, doi: 10.1016/j.desal.2021.115450.
- K.W. Know, Y.W. Wong, R.K. Rajkumar, R.K. Rajkumar, A review
on performance of artificial intelligence and conventional
method in mitigating PV grid-tied related power quality events,
Renewable Sustainable Energy Rev., 56 (2016) 334–346.
- A.H. Sodhro, S. Pirbhulal, V.H.C. De Albuquerque, Artificial
intelligence-driven mechanism for edge computing-based
industrial applications, IEEE Trans. Ind. Inf., 15 (2019)
4235–4243.
- D.K. Ranaweera, G.G. Karady, R.G. Farmer, Economic impact
analysis of load forecasting, IEEE Trans. Power Syst., 12 (1997)
1388–1392.
- Y. Ren, P.N. Suganthan, N. Srikanth, A comparative study
of empirical mode decomposition-based short-term wind
speed forecasting methods, IEEE Trans. Sustainable Energy,
6 (2015) 236–244.
- F. Rodríguez, A. Fleetwood, A. Galarza, L. Fontán, Predicting
solar energy generation through artificial neural networks
using weather forecasts for microgrid control, Renewable
Energy, 126 (2018) 855–864.
- K.B. Debnath, M. Mourshed, Forecasting methods in energy
planning models, Renewable Sustainable Energy Rev.,
88 (2018) 297–325.
- E.T. Sayed, A.G. Olabi, K. Elsadi, M. Al Radi, C. Semeraro,
M.H. Doranehgard, M.E. Eltayeb, A. Abdelkareem, Application
of artificial intelligence techniques for modeling, optimizing,
and controlling desalination systems powered by renewable
energy resources, J. Cleaner Prod., 413 (2023) 137486,
doi: 10.1016/j.jclepro.2023.137486.
- N.I. Santos, A.M. Said, D.E. James, N.H. Venkatesh, Modeling
solar still production using local weather data and artificial
neural networks, Renewable Energy, 40 (2012) 71–79.
- A.F. Mashaly, A. Alazba, A. Al-Awaadh, M.A.J.S.E. Mattar,
Predictive model for assessing and optimizing solar still
performance using artificial neural network under hyper arid
environment, Sol. Energy, 118 (2015) 41–58.
- A.F. Mashaly, A.A. Alzaba, MLP and MLR models for
instantaneous thermal efficiency prediction of solar still
under hyper-arid environment, Comput. Electron. Agric.,
122 (2016) 146–155.
- A.F. Mashaly, A.J.S.E. Alazba, Thermal performance analysis
of an inclined passive solar still using agricultural drainage
water and artificial neural network in arid climate, Sol. Energy,
153 (2017) 383–395.
- F.A. Essa, M. Abd Elaziz, A.H. Elsheikh, An enhanced
productivity prediction model of active solar still using
artificial neural network and Harris Hawks optimizer,
Appl. Therm. Eng., 170 (2020) 115020, doi: 10.1016/j.applthermaleng.2020.115020.
- H. Salem, A.E. Kabeel, E.M.S. El-Said, O.M. Elzeki, Predictive
modelling for solar power-driven hybrid desalination
system using artificial neural network regression with Adam
optimization, Desalination, 522 (2022) 115411, doi: 10.1016/j.desal.2021.115411.
- H. Salem, I.M. El-Hasnony, A.E. Kabeel, E.M.S. El-Said,
O.M. Elzeki, Deep learning model and classification
explainability of renewable energy-driven membrane desalination
system using evaporative cooler, Alexandria Eng. J.,
61 (2022b) 10007–10024.
- R. Porrazzo, A. Cipollina, M. Galuzzo, G. Micale, A neural
network-based optimizing control system for a seawaterdesalination
solar-powered membrane distillation unit,
Comput. Chem. Eng., 54 (2013) 79–96.
- S. Lee, S. Myung, J. Hong, D.J.D. Har, Reverse osmosis
desalination process optimized for maximum permeate
production with renewable energy, Desalination, 398 (2016)
133–143.
- P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven
SWRO desalination prototype with and without batteries:
a performance simulation using machine learning models,
Desalination, 435 (2018) 77–96.
- A. Al-Alawi, S.M. Al-Alawi, S.M. Islam, Predictive control of
an integrated PV-diesel water and power supply system using
an artificial neural network, Renewable Energy, 32 (2007)
1426–1439.
- Q. Li, J. Loy-Benitez, K. Nam, S. Hwangbo, J. Rashidi, C.J.E. Yoo,
Sustainable and reliable design of reverse osmosis desalination
with hybrid renewable energy systems through supply
chain forecasting using recurrent neural networks, Energy,
178 (2019) 277–292.
- O. Charrouf, A. Betka, S. Abdeddaim, A. Ghamri, Artificial
neural network power manager for hybrid PV-wind
desalination system, Math. Comput. Simul., 167 (2020) 443–460.
- K. Bourouni, T.B. M’Barek, A. Al Taee, Design and optimization
of desalination reverse osmosis plants driven by renewable
energies using genetic algorithms, Renewable Energy,
36 (2011) 936–950.
- A. Maleki, F. Pourfayaz, M.H. Ahmadi, Design of a costeffective
wind/photovoltaic/hydrogen energy system for
supplying a desalination unit by a heuristic approach,
Sol. Energy, 139 (2016) 666–675.
- A.M. Abdelshafy, H. Hassan, J. Jurasz, Optimal design of a
grid-connected desalination plant powered by renewable
energy resources using a hybrid PSO–GWO approach,
Energy Convers. Manage., 173 (2018) 331–347.
- A.J.D. Maleki, Design and optimization of autonomous solarwind-
reverse osmosis desalination systems coupling battery
and hydrogen energy storage by an improved bee algorithm,
Desalination, 435 (2018) 221–234.
- G. Zhang, B. Wu, A. Maleki, W.J.S.E. Zhang, Simulated
annealing-chaotic search algorithm-based optimization of
reverse osmosis hybrid desalination system driven by wind
and solar, Energies, 173 (2018) 964–975.