References

  1. FAO, The State of the World’s Land and Water Resources for Food and Agriculture – Systems at Breaking Point, Synthesis Report 2021, Food and Agriculture Organization, Rome, 2021. doi: 10.4060/cb7654en
  2. FAO, AQUASTAT - FAO’s Global Information System on Water and Agriculture, Food and Agriculture Organization. Available at https://www.fao.org/aquastat/en/overview/methodology
  3. L.N.M. Tawfiq, A.K. Jabber, Evaluation of groundwater quality in Karbala City, Muthanna J. Pure Sci., 8 (2020) 40–48.
  4. M.A. Al-Obaidi, A.A. Alsarayreh, A.M. Al-Hroub, S.M. Alsadaie, I.M. Mujtaba, Performance analysis of a medium-sized industrial reverse osmosis brackish water desalination plant, Desalination, 443 (2018) 272–284.
  5. C. Bales, P. Kovalsky, J. Fletcher, T.D. Waite, Low-cost desalination of brackish groundwaters by capacitive deionization (CDI) – implications for irrigated agriculture, Desalination, 453 (2019) 37–53.
  6. A. Altaee, N. Hilal, High recovery rate NF–FO–RO hybrid system for inland brackish water treatment, Desalination, 363 (2015) 19–25.
  7. N.A. Ahmad, P.S. Goh, L.T. Yogarathinam, Z.A. Karim, A.F. Ismail, Current advances in membrane technologies for produced water desalination, Desalination, 493 (2020) 114643, doi: 10.1016/j.desal.2020.114643.
  8. J. Ketharani, M.A.C.K. Hansima, S. Indika, D.R. Samarajeewa, M. Makehelwala, K.B.S.N. Jinadasa, S.K. Weragoda, R.M.L.D. Rathnayake, K.G.N. Nanayakkara, Y. Wei, S.L. Schensul, R. Weerasooriya, A comparative study of community reverse osmosis and nanofiltration systems for total hardness removal in groundwater, Groundwater Sustainable Dev., 18 (2022) 100800, doi: 10.1016/j.gsd.2022.100800.
  9. M. Oshchepkov, V. Golovesov, A. Ryabova, S. Tkachenko, A. Redchuk, H. Rönkkömäki, G. Rudakova, A. Pervov, K. Popov, Visualization of a novel fluorescent-tagged bisphosphonate behavior during reverse osmosis desalination of water with high sulfate content, Sep. Purif. Technol., 255 (2021) 117382, doi: 10.1016/j.seppur.2020.117382.
  10. M. Bodzek, K. Konieczny, Removal of Nonorganic Pollutants From the Water Environment by Membrane Methods, Seidel- Przywecki Publishing House, Warsaw, 2011 (in Polish).
  11. D. Yadav, S. Karki, P.G. Ingole, Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications, J. Environ. Chem. Eng., 10 (2022) 108109, doi: 10.1016/j.jece.2022.108109.
  12. R. Castro-Muñoz, G. Boczkaj, E. Gontarek, A. Cassano, V. Fíla, Membrane technologies assisting plant-based and agro-food by-products processing: a comprehensive review, Trends Food Sci. Technol., 95 (2020) 219–232.
  13. J. Shi, W. Huang, H. Han, Ch. Xu, Review on treatment technology of salt wastewater in coal chemical industry of China, Desalination, 493 (2020) 114640, doi: 10.1016/j.desal.2020.114640.
  14. M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: a state-of-the-art review, Desalination, 459 (2019) 59–104.
  15. D.M. Warsinger, E.W. Tow, K.G. Nayar, L.A. Maswadeh, J.H. Lienhard V, Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination, Water Res., 106 (2016) 272–282.
  16. S. Al-Gharabli, Z. Abu El-Rub, E. Hamad, W. Kujawski, Z. Flanc, K. Pianka, J. Kujawa, Surfaces with adjustable features — effective and durable materials for water desalination, Int. J. Mol. Sci., 22 (2021) 11743, doi: 10.3390/ijms222111743.
  17. M. Belkacem, S. Bekhti, K. Bensadok, Groundwater treatment by reverse osmosis, Desalination, 206 (2007) 100–106.
  18. S.-Y. Pan, A.Z. Haddad, A. Kumar, S-W. Wang, Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus, Water Res., 183 (2020) 116064, doi: 10.1016/j.watres.2020.116064.
  19. M. Kurihara, H. Takeuchi, SWRO-PRO system in “mega-ton water system” for energy reduction and low environmental impact, Water, 10 (2018) 1–15.
  20. DuPont® - NDuPont™ Dairy Energy Savings Tool. Available at: www.dupontlifesciences.com
  21. Polish District Sanitary-Epidemiological Station, Area Water Quality Assessments for Municipalities in Poland, Prepared and Published by the Sanitary and Epidemiological Station of the Appropriate Provincial Districts 2022. Available at https://www.gov.pl/web/psse (in Polish)
  22. Chief Sanitary Inspector, Report of the Chief Sanitary Inspector - Sanitary State of the Country in 2020. Available at https://www.gov.pl/web/gis/glowny-inspektorat-sanitarny (in Polish).
  23. D. Kaczor-Kurzawa, Geogenic chloride anomalies in groundwaters of the usable levels of Central Poland, Geol. Rev., 65 (2017) 1282–1289 (in Polish).
  24. Design Tool | Knowledge Base | Toray Membrane | TORAY (water.toray).
  25. WAVE Water Treatment Design Software (dupont.com).
  26. Hydrogeological Data of the State Hydrogeological Service, Central Hydrogeological Data Bank - HYDRO Bank. Available at https://www.pgi.gov.pl/psh/dane-hydrogeologicznepsh/947-bazy-danych-hydrogeologiczne/9057-bankhydro.html
  27. Regulation of the Polish Minister of Health of 7 December 2017 on the Quality of Water Intended for Human Consumption, J. Laws 2017, Item 2294, Available at https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170002294/O/D20172294.pdf
  28. F. García-Ávila, C. Zhindón-Arévalo, R. Álvarez-Ochoa, S. Donoso-Moscoso, M.D. Tonon-rdoñez,
    L. Flores del Pino, Optimization of water use in a rapid filtration system: a case study, Water-Energy Nexus, 3 (2020) 1–10.
  29. I. Zimoch. Purposefulness of recycling rapid filter backwash water in surface water treatment systems, Ochrona Środowiska, Environ. Prot., 35 (2013) 17–22 (in Polish).
  30. National Data Published in the Field of Government-Funded Investments. Available at https://ezamowienia.gov.pl/pl/