References
- X.-g. Zhao, G. Wan, Current situation and prospect of China’s
geothermal resources, Renewable Sustainable Energy Rev.,
32 (2014) 651–661.
- J. Zhu, K. Hu, X. Lu, X. Huang, K. Liu, X. Wu, A review of
geothermal energy resources, development, and applications
in China: current status and prospects, Energy, 93 (2015)
466–483.
- V.A. Gude, Geothermal source potential for water desalination
– current status and future perspective, Renewable
Sustainable Energy Rev., 57 (2016) 1038–1065.
- M. Prajapati, M. Shah, B. Soni, A review of geothermal
integrated desalination: a sustainable solution to overcome
potential freshwater shortages, J. Cleaner Prod., 326 (2021)
129412, doi: 10.1016/j.jclepro.2021.129412.
- UNESCO-WWAP, The United Nations World Development
Report 2019, Leaving No One Behind, Vol. 12, Executive
Summary, 2019.
- Y.A. Jarma, A. Karaoğlu, Ö. Tekin, I.R.A. Senan, A. Baba,
N. Kabay, Integrated pressure-driven membrane separation
processes for the production of agricultural irrigation water
from spent geothermal water, Desalination, 523 (2022) 115428,
doi: 10.1016/j.desal.2021.115428.
- Y.A. Jarma, A. Karaoğlu, I.R.A. Senan, M.K. Meriç, Y.S. Kukul,
E. Özçakal, N.T. Barlas, H. Çakıcı, A. Baba, N. Kabay, Utilization
of membrane separation processes for reclamation and reuse
of geothermal water in agricultural irrigation of tomato plantspilot
membrane tests and economic analysis, Desalination,
528 (2022) 115608, doi: 10.1016/j.desal.2022.115608.
- World Bank Group, Available at https://www.worldbank.
org/en/news/immersive-story/2023/09/12/ droughts-anddeficits-
the-global-impacts?cid=ccg_tt_climatechange_en_ext
(Access: 29.10.2023).
- M.F.A. Goosen, H. Mahmoudi, N. Ghaffour, Today’s and future
challenges in applications of renewable energy technologies
for desalination, Crit. Rev. Env. Sci. Technol., 44 (2014)
929–999.
- N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen,
Renewable energy-driven desalination technologies: a comprehensive
review on challenges and potential applications
of integrated systems, Desalination, 356 (2015) 94–114.
- H. Mahmoudi, N. Ghaffour, M. Goosen, J. Bundschuh,
Renewable Energy Technologies for Water Desalination, Series:
Sustainable Water Developments, Taylor & Francis Group,
London, UK, 2017.
- J. Bundschuh, M. Kaczmarczyk, N. Ghaffour, B. Tomaszewska,
State-of-the-art of renewable energy sources used in water
desalination: present and future prospects, Desalination,
508 (2021) 115035, doi: 10.1016/j.desal.2021.115035.
- B. Tomaszewska, G.G. Akkurt, M. Kaczmarczyk,
A. Kasztelewicz, M. Mukti, H.B. Gural, Y.A. Jarma, A. Baba,
N. Kabay, Renewable Energy Sources Utilized for Membrane
Desalination Processes, L.F. Dumée, M. Sadrzadeh,
M.M.A. Shirazi, Eds., Green Membrane Technologies Towards
Environmental Sustainability, Elsevier, Amsterdam, Oxford,
Cambridge, 2023, pp. 371–414.
- Y.C. Tsai, C.P. Chiu, F.K. Ko, T.C. Chen, J.T. Yang, Desalination
plants and renewables combined to solve power and water
issues, Energy, 113 (2016) 1018–1030.
- N. Ghaffour, S. Soukane, J.-G. Lee, Y. Kim, A. Alpatova,
Membrane distillation hybrids for water production and
energy efficiency enhancement: a critical review, Appl. Energy,
254 (2019) 113698, doi: 10.1016/j.apenergy.2019.113698.
- M. Kaczmarczyk, B. Tomaszewska, W. Bujakowski, Innovative
desalination of geothermal wastewater supported by electricity
generated from low-enthalpy geothermal resources,
Desalination, 524 (2022) 115450, doi: 10.1016/j.desal.2021.115450.
- E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang,
The state of desalination and brine production: a global
outlook, Sci. Total Environ., 657 (2019) 1343–1356.
- F.E. Ahmed, R. Hashaikeh, N.L. Hilal, Solar powered
desalination-technology, energy and future outlook,
Desalination, 453 (2019) 54–76.
- A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane
technology in renewable-energy-driven desalination, Renewable
Sustainable Energy Rev., 81 (2018) 1–21.
- B. Tomaszewska, G.G. Akkurt, M. Kaczmarczyk, W. Bujakowski,
N. Keles, Y.A. Jarma, A. Baba, M. Bryjak, N. Kabay, Utilization
of renewable energy sources in desalination of geothermal
water for agriculture, Desalination, 513 (2021) 115151,
doi: 10.1016/j.desal.2021.115151.
- S. Koohi-Fayegh, M.A. Rosen, A review of energy storage
types, applications and recent developments, J. Energy
Storage, 27 (2020) 101047, doi: 10.1016/j.est.2019.101047.
- B. Tashtoush, W. Alyahya, M. Al Ghadi, J. Al-Omari, T. Morosuk,
Renewable energy integration in water desalination: state-of-the-art review and comparative analysis, Appl. Energy,
352 (2023) 121950, doi: 10.1016/j.apenergy.2023.121950.
- J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Belueco,
A review on the complementarity of renewable energy
sources: concept, metrics, application and future research
directions, Sol. Energy, 195 (2020) 703–724.
- R. Koh, J. Kern, S. Galelli, Hard-coupling water and power
system models increases the complementarity of renewable
energy sources, Appl. Energy, 321 (2022) 119386, doi: 10.1016/j.apenergy.2022.119386.
- R. Pedruzzi, A.R. Silva, T.S. dos Santos, A.C. Araujo,
A.L.C. Weyll, Y.K.A. Kitagawa, D.N. da Silva Ramos,
F.M. de Souza, M.V.A. Narciso, M.L.S. Araujo, R.C. Medrado,
W.O.C. Júnior, A.T. Neto, M. de Carvalho, W.R.P. Bezerra,
T.T. Costa, J.B. de Melo Filho, A.A.B. Santos, D.M. Moreira,
Review of mapping analysis and complementarity between
solar and wind energy sources, Energy, 283 (2023) 129045,
doi: 10.1016/j.energy.2023.129045.
- Z. Han, D. Fang, P. Yang, L. Lei, Cooperative mechanisms
for multi-energy complementarity in the electricity spot
market, Energy Econ., 127 (2023) 107108, doi: 10.1016/j.eneco.2023.107108.
- Y. Sun, Y. Li, R. Wang, R. Ma, Assessing the national synergy
potential of onshore and offshore renewable energy from
the perspective of resources dynamic and complementarity,
Energy, 279 (2023) 128106, doi: 10.1016/j.energy.2023.128106.
- T. Luz, P. Moura, 100% Renewable energy planning with
complementarity and flexibility based on a multi-objective
assessment, Appl. Energy, 255 (2019) 113819, doi: 10.1016/j.apenergy.2019.113819.
- C. de Oliveira Costa Souza Rosa, E. da Silva Christo, K.A. Costa,
L. dos Santos, Assessing complementarity and optimising the
combination of intermittent renewable energy sources using
ground measurements, J. Cleaner Prod., 258 (2020) 120946,
doi: 10.1016/j.jclepro.2020.120946.
- F. Henao, J.P. Viteri, Y. Rodriguez, J. Gomez, I. Dyner, Annual
and interannual complementarities of renewable energy
sources in Colombia, Renewable Sustainable Energy Rev.,
134 (2020) 110318, doi: 10.1016/j.rser.2020.110318.
- M. Gonzalez-Salazar, W.R. Poganietz, Making use of the
complementarity of hydropower and variable renewable energy
in Latin America: a probabilistic analysis, Energy Storage Rev.,
44 (2022) 100972, doi: 10.1016/j.esr.2022.100972.
- K. Haung, P. Luo, P. Liu, J.S. Kim, Y. Wang, W. Xu, H. Li,
Y. Gong, Improving complementarity of a hybrid renewable
energy system to meet load demand by using hydropower
regulation ability, Energy, 248 (2022) 123535, doi: 10.1016/j.energy.2022.123535.
- O. Delbeke, J.D. Moschner, J. Driesen, The complementarity
of offshore wind and floating photovoltaics in the Belgian
North Sea, an analysis up to 2100, Renewable Energy,
218 (2023) 119253, doi: 10.1016/j.renene.2023.119253.
- K. Muchiri, J.N. Kamau, D.W. Wekesa, Ch.O. Saoke, J.N. Mutuku,
J.K. Gathua, Wind and solar resource complementarity and
its viability in wind/PV hybrid energy systems in Machakos,
Kenya, Sci. Afr., 20 (2023) 01599, doi: 10.1016/j.sciaf.2023.e01599.
- X. Costoya, M. de Castro, D. Carvalho, M. Gomez-Gesteira,
Assessing the complementarity of future hybrid wind and
solar photovoltaic energy resources for North America,
Renewable Sustainable Energy Rev., 173 (2023) 113101,
doi: 10.1016/j.rser.2022.113101.
- Sh. Pennock, D. Coles, A. Angeloudis, S. Bhattacharya,
H. Jeffrey, Temporal complementarity of marine renewables
with wind and solar generation: implications for GB system
benefits, Appl. Energy 319 (2022) 119276, doi: 10.1016/j.apenergy.2022.119276.
- Polskie Sieci Elektroenergetyczne, Dane systemowe, Praca KSE –
generacja źródeł wiatrowych i fotowoltaicznych. Available
at https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-dobowe-z-pracy-kse/generacja-zrodel-wiatrowych
(Access: 25.10.2023).
- R. Wierzbicki, Zastosowanie modelowania matematycznego
w projektowaniu modernizacji systemów zaopatrzenia w
wodę na przykładzie systemu wodociągowego gminy Zator
(część I), J. Civ. Eng. Environ. Arch., 62 (2015) 511–522.
- S.A. Urrea, F.D. Reyes, B.P. Suarez, J.A. de la Fuente Bencomo,
Technical review, evaluation and efficiency of energy recovery
devices installed in the Canary Islands desalination plants,
Desalination, 450 (2019) 54–63.
- W. Wang, B. Yuan, Q. Sun, R. Wennersten, Application of
energy storage in integrated energy systems — a solution to
fluctuation and uncertainty of renewable energy, J. Energy
Storage, 52 (2022) 104812, doi: 10.1016/j.est.2022.104812.
- S. Schar, A. Bischi, A. Baccioli, U. Desideri, J. Geldermann,
Optimization of sustainable seawater desalination: modeling
renewable energy integration and energy storage concepts,
Energy Convers. Manage., 293 (2023) 117447, doi: 10.1016/j.enconman.2023.117447.
- C. Ramirez-Ruiz, C.F. Valencia, S. Cabrales, A.F. Ramirez,
Bi-objective optimal design of desalination plants considering
the uncertainty of renewable energy sources, Energy Rep.,
10 (2023) 2467–2485.
- A.E. Karaca, I. Dincer, M. Nitefor, A new renewable energy
system integrated with compressed air energy storage
and multistage desalination, Energy, 268 (2023) 126723,
doi: 10.1016/j.energy.2023.126723.
- B. Liu, B. Zhou, D. Yang, G. Li, J. Cao, S. Bu, T. Litter, Optimal
planning of hybrid renewable energy system considering
virtual energy storage of desalination plant based on mixedinteger
NSGA-III, Desalination, 521 (2022) 115382, doi: 10.1016/j.desal.2021.115382.
- Y. Gevez, I. Dincer, A novel renewable energy system designed
with Mg–Cl thermochemical cycle, desalination and heat
storage options, Energy, 283 (2023) 129101, doi: 10.1016/j.energy.2023.129101.
- Ch. Wang, P. Meng, Sh. Wang, D. Song, Y. Xiao, Y. Zhang,
Q. Ma, S. Liu, K. Wang, Y. Zhang, Comparison of two types
of energy recovery devices: pressure exchanger and turbine
in an island desalination project case, Desalination, 533 (2022)
115752, doi: 10.1016/j.desal.2022.115752.
- Y. He, S. Guo, P. Dong, Ch. Wang, J. Huang, J. Zhou, Technoeconomic
comparison of different hybrid energy storage
systems for off-grid renewable energy applications based on
a novel probabilistic reliability index, Appl. Energy, 328 (2022)
120225, doi: 10.1016/j.apenergy.2022.120225.
- F. Gasanzade, F. Witte, I. Tuschy, S. Bauer, Integration of
geological compressed air energy storage into future energy
supply systems dominated by renewable power sources,
Energy Convers. Manage., 277 (2023) 116643, doi: 10.1016/j.enconman.2022.116643.
- M. Temiz, I. Dincer, Cleaner production of energy and fuels
from a renewable energy-based self-sufficient system with
energy storage options, J. Energy Storage, 72 (2023) 108415,
doi: 10.1016/j.est.2023.108415.
- Y-Ch. Tsao, Th-L. Vu, Distributed energy storage system
planning in relation to renewable energy investment,
Renewable Energy, 218 (2023) 119271, doi: 10.1016/j.renene.2023.119271.
- G. Bursco, D. Menniti, A. Pinnarelli, N. Sorrentino, Renewable
Energy Community with distributed storage optimization
to provide energy sharing and additional ancillary services,
Sustainable Energy Grids Networks, 36 (2023) 101173,
doi: 10.1016/j.segan.2023.101173.
- D. Kang, D. Kang, S. Hwangbo, H. Niaz, W.B. Lee, J.J. Liu,
J. Na, Optimal planning of hybrid energy storage systems
using curtailed renewable energy through deep reinforcement
learning, Energy, 284 (2023) 128623, doi: 10.1016/j.energy.2023.128623.