References

  1. X.-g. Zhao, G. Wan, Current situation and prospect of China’s geothermal resources, Renewable Sustainable Energy Rev., 32 (2014) 651–661.
  2. J. Zhu, K. Hu, X. Lu, X. Huang, K. Liu, X. Wu, A review of geothermal energy resources, development, and applications in China: current status and prospects, Energy, 93 (2015) 466–483.
  3. V.A. Gude, Geothermal source potential for water desalination – current status and future perspective, Renewable Sustainable Energy Rev., 57 (2016) 1038–1065.
  4. M. Prajapati, M. Shah, B. Soni, A review of geothermal integrated desalination: a sustainable solution to overcome potential freshwater shortages, J. Cleaner Prod., 326 (2021) 129412, doi: 10.1016/j.jclepro.2021.129412.
  5. UNESCO-WWAP, The United Nations World Development Report 2019, Leaving No One Behind, Vol. 12, Executive Summary, 2019.
  6. Y.A. Jarma, A. Karaoğlu, Ö. Tekin, I.R.A. Senan, A. Baba, N. Kabay, Integrated pressure-driven membrane separation processes for the production of agricultural irrigation water from spent geothermal water, Desalination, 523 (2022) 115428, doi: 10.1016/j.desal.2021.115428.
  7. Y.A. Jarma, A. Karaoğlu, I.R.A. Senan, M.K. Meriç, Y.S. Kukul, E. Özçakal, N.T. Barlas, H. Çakıcı, A. Baba, N. Kabay, Utilization of membrane separation processes for reclamation and reuse of geothermal water in agricultural irrigation of tomato plantspilot membrane tests and economic analysis, Desalination, 528 (2022) 115608, doi: 10.1016/j.desal.2022.115608.
  8. World Bank Group, Available at https://www.worldbank. org/en/news/immersive-story/2023/09/12/ droughts-anddeficits- the-global-impacts?cid=ccg_tt_climatechange_en_ext (Access: 29.10.2023).
  9. M.F.A. Goosen, H. Mahmoudi, N. Ghaffour, Today’s and future challenges in applications of renewable energy technologies for desalination, Crit. Rev. Env. Sci. Technol., 44 (2014) 929–999.
  10. N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen, Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems, Desalination, 356 (2015) 94–114.
  11. H. Mahmoudi, N. Ghaffour, M. Goosen, J. Bundschuh, Renewable Energy Technologies for Water Desalination, Series: Sustainable Water Developments, Taylor & Francis Group, London, UK, 2017.
  12. J. Bundschuh, M. Kaczmarczyk, N. Ghaffour, B. Tomaszewska, State-of-the-art of renewable energy sources used in water desalination: present and future prospects, Desalination, 508 (2021) 115035, doi: 10.1016/j.desal.2021.115035.
  13. B. Tomaszewska, G.G. Akkurt, M. Kaczmarczyk, A. Kasztelewicz, M. Mukti, H.B. Gural, Y.A. Jarma, A. Baba, N. Kabay, Renewable Energy Sources Utilized for Membrane Desalination Processes, L.F. Dumée, M. Sadrzadeh, M.M.A. Shirazi, Eds., Green Membrane Technologies Towards Environmental Sustainability, Elsevier, Amsterdam, Oxford, Cambridge, 2023, pp. 371–414.
  14. Y.C. Tsai, C.P. Chiu, F.K. Ko, T.C. Chen, J.T. Yang, Desalination plants and renewables combined to solve power and water issues, Energy, 113 (2016) 1018–1030.
  15. N. Ghaffour, S. Soukane, J.-G. Lee, Y. Kim, A. Alpatova, Membrane distillation hybrids for water production and energy efficiency enhancement: a critical review, Appl. Energy, 254 (2019) 113698, doi: 10.1016/j.apenergy.2019.113698.
  16. M. Kaczmarczyk, B. Tomaszewska, W. Bujakowski, Innovative desalination of geothermal wastewater supported by electricity generated from low-enthalpy geothermal resources, Desalination, 524 (2022) 115450, doi: 10.1016/j.desal.2021.115450.
  17. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang, The state of desalination and brine production: a global outlook, Sci. Total Environ., 657 (2019) 1343–1356.
  18. F.E. Ahmed, R. Hashaikeh, N.L. Hilal, Solar powered desalination-technology, energy and future outlook, Desalination, 453 (2019) 54–76.
  19. A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane technology in renewable-energy-driven desalination, Renewable Sustainable Energy Rev., 81 (2018) 1–21.
  20. B. Tomaszewska, G.G. Akkurt, M. Kaczmarczyk, W. Bujakowski, N. Keles, Y.A. Jarma, A. Baba, M. Bryjak, N. Kabay, Utilization of renewable energy sources in desalination of geothermal water for agriculture, Desalination, 513 (2021) 115151, doi: 10.1016/j.desal.2021.115151.
  21. S. Koohi-Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments, J. Energy Storage, 27 (2020) 101047, doi: 10.1016/j.est.2019.101047.
  22. B. Tashtoush, W. Alyahya, M. Al Ghadi, J. Al-Omari, T. Morosuk, Renewable energy integration in water desalination: state-of-the-art review and comparative analysis, Appl. Energy, 352 (2023) 121950, doi: 10.1016/j.apenergy.2023.121950.
  23. J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Belueco, A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions, Sol. Energy, 195 (2020) 703–724.
  24. R. Koh, J. Kern, S. Galelli, Hard-coupling water and power system models increases the complementarity of renewable energy sources, Appl. Energy, 321 (2022) 119386, doi: 10.1016/j.apenergy.2022.119386.
  25. R. Pedruzzi, A.R. Silva, T.S. dos Santos, A.C. Araujo, A.L.C. Weyll, Y.K.A. Kitagawa, D.N. da Silva Ramos,
    F.M. de Souza, M.V.A. Narciso, M.L.S. Araujo, R.C. Medrado, W.O.C. Júnior, A.T. Neto, M. de Carvalho, W.R.P. Bezerra, T.T. Costa, J.B. de Melo Filho, A.A.B. Santos, D.M. Moreira, Review of mapping analysis and complementarity between solar and wind energy sources, Energy, 283 (2023) 129045, doi: 10.1016/j.energy.2023.129045.
  26. Z. Han, D. Fang, P. Yang, L. Lei, Cooperative mechanisms for multi-energy complementarity in the electricity spot market, Energy Econ., 127 (2023) 107108, doi: 10.1016/j.eneco.2023.107108.
  27. Y. Sun, Y. Li, R. Wang, R. Ma, Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity, Energy, 279 (2023) 128106, doi: 10.1016/j.energy.2023.128106.
  28. T. Luz, P. Moura, 100% Renewable energy planning with complementarity and flexibility based on a multi-objective assessment, Appl. Energy, 255 (2019) 113819, doi: 10.1016/j.apenergy.2019.113819.
  29. C. de Oliveira Costa Souza Rosa, E. da Silva Christo, K.A. Costa, L. dos Santos, Assessing complementarity and optimising the combination of intermittent renewable energy sources using ground measurements, J. Cleaner Prod., 258 (2020) 120946, doi: 10.1016/j.jclepro.2020.120946.
  30. F. Henao, J.P. Viteri, Y. Rodriguez, J. Gomez, I. Dyner, Annual and interannual complementarities of renewable energy sources in Colombia, Renewable Sustainable Energy Rev., 134 (2020) 110318, doi: 10.1016/j.rser.2020.110318.
  31. M. Gonzalez-Salazar, W.R. Poganietz, Making use of the complementarity of hydropower and variable renewable energy in Latin America: a probabilistic analysis, Energy Storage Rev., 44 (2022) 100972, doi: 10.1016/j.esr.2022.100972.
  32. K. Haung, P. Luo, P. Liu, J.S. Kim, Y. Wang, W. Xu, H. Li, Y. Gong, Improving complementarity of a hybrid renewable energy system to meet load demand by using hydropower regulation ability, Energy, 248 (2022) 123535, doi: 10.1016/j.energy.2022.123535.
  33. O. Delbeke, J.D. Moschner, J. Driesen, The complementarity of offshore wind and floating photovoltaics in the Belgian North Sea, an analysis up to 2100, Renewable Energy, 218 (2023) 119253, doi: 10.1016/j.renene.2023.119253.
  34. K. Muchiri, J.N. Kamau, D.W. Wekesa, Ch.O. Saoke, J.N. Mutuku, J.K. Gathua, Wind and solar resource complementarity and its viability in wind/PV hybrid energy systems in Machakos, Kenya, Sci. Afr., 20 (2023) 01599, doi: 10.1016/j.sciaf.2023.e01599.
  35. X. Costoya, M. de Castro, D. Carvalho, M. Gomez-Gesteira, Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America, Renewable Sustainable Energy Rev., 173 (2023) 113101, doi: 10.1016/j.rser.2022.113101.
  36. Sh. Pennock, D. Coles, A. Angeloudis, S. Bhattacharya, H. Jeffrey, Temporal complementarity of marine renewables with wind and solar generation: implications for GB system benefits, Appl. Energy 319 (2022) 119276, doi: 10.1016/j.apenergy.2022.119276.
  37. Polskie Sieci Elektroenergetyczne, Dane systemowe, Praca KSE – generacja źródeł wiatrowych i fotowoltaicznych. Available at https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-dobowe-z-pracy-kse/generacja-zrodel-wiatrowych (Access: 25.10.2023).
  38. R. Wierzbicki, Zastosowanie modelowania matematycznego w projektowaniu modernizacji systemów zaopatrzenia w wodę na przykładzie systemu wodociągowego gminy Zator (część I), J. Civ. Eng. Environ. Arch., 62 (2015) 511–522.
  39. S.A. Urrea, F.D. Reyes, B.P. Suarez, J.A. de la Fuente Bencomo, Technical review, evaluation and efficiency of energy recovery devices installed in the Canary Islands desalination plants, Desalination, 450 (2019) 54–63.
  40. W. Wang, B. Yuan, Q. Sun, R. Wennersten, Application of energy storage in integrated energy systems — a solution to fluctuation and uncertainty of renewable energy, J. Energy Storage, 52 (2022) 104812, doi: 10.1016/j.est.2022.104812.
  41. S. Schar, A. Bischi, A. Baccioli, U. Desideri, J. Geldermann, Optimization of sustainable seawater desalination: modeling renewable energy integration and energy storage concepts, Energy Convers. Manage., 293 (2023) 117447, doi: 10.1016/j.enconman.2023.117447.
  42. C. Ramirez-Ruiz, C.F. Valencia, S. Cabrales, A.F. Ramirez, Bi-objective optimal design of desalination plants considering the uncertainty of renewable energy sources, Energy Rep., 10 (2023) 2467–2485.
  43. A.E. Karaca, I. Dincer, M. Nitefor, A new renewable energy system integrated with compressed air energy storage and multistage desalination, Energy, 268 (2023) 126723, doi: 10.1016/j.energy.2023.126723.
  44. B. Liu, B. Zhou, D. Yang, G. Li, J. Cao, S. Bu, T. Litter, Optimal planning of hybrid renewable energy system considering virtual energy storage of desalination plant based on mixedinteger NSGA-III, Desalination, 521 (2022) 115382, doi: 10.1016/j.desal.2021.115382.
  45. Y. Gevez, I. Dincer, A novel renewable energy system designed with Mg–Cl thermochemical cycle, desalination and heat storage options, Energy, 283 (2023) 129101, doi: 10.1016/j.energy.2023.129101.
  46. Ch. Wang, P. Meng, Sh. Wang, D. Song, Y. Xiao, Y. Zhang, Q. Ma, S. Liu, K. Wang, Y. Zhang, Comparison of two types of energy recovery devices: pressure exchanger and turbine in an island desalination project case, Desalination, 533 (2022) 115752, doi: 10.1016/j.desal.2022.115752.
  47. Y. He, S. Guo, P. Dong, Ch. Wang, J. Huang, J. Zhou, Technoeconomic comparison of different hybrid energy storage systems for off-grid renewable energy applications based on a novel probabilistic reliability index, Appl. Energy, 328 (2022) 120225, doi: 10.1016/j.apenergy.2022.120225.
  48. F. Gasanzade, F. Witte, I. Tuschy, S. Bauer, Integration of geological compressed air energy storage into future energy supply systems dominated by renewable power sources, Energy Convers. Manage., 277 (2023) 116643, doi: 10.1016/j.enconman.2022.116643.
  49. M. Temiz, I. Dincer, Cleaner production of energy and fuels from a renewable energy-based self-sufficient system with energy storage options, J. Energy Storage, 72 (2023) 108415, doi: 10.1016/j.est.2023.108415.
  50. Y-Ch. Tsao, Th-L. Vu, Distributed energy storage system planning in relation to renewable energy investment, Renewable Energy, 218 (2023) 119271, doi: 10.1016/j.renene.2023.119271.
  51. G. Bursco, D. Menniti, A. Pinnarelli, N. Sorrentino, Renewable Energy Community with distributed storage optimization to provide energy sharing and additional ancillary services, Sustainable Energy Grids Networks, 36 (2023) 101173, doi: 10.1016/j.segan.2023.101173.
  52. D. Kang, D. Kang, S. Hwangbo, H. Niaz, W.B. Lee, J.J. Liu, J. Na, Optimal planning of hybrid energy storage systems using curtailed renewable energy through deep reinforcement learning, Energy, 284 (2023) 128623, doi: 10.1016/j.energy.2023.128623.