References
- T. Oki, S. Kanae, Global hydrological cycles and world water
resources retentate, Science, 313 (2006) 1068–1072.
- D.M. Nester, Salt water cooling tower, Chem. Eng. Prog.,
67 (1971) 7.
- National Seawater Utilization Report, Ministry of Natural
Resources, Beijing, 2021.
- R. Daniel, J.F. Casanueva, N. Enrique, Assessment of the
antifouling effect of five different treatment strategies on a
seawater cooling system, Appl. Therm. Eng., 85 (2015) 124–134.
- L. Zhang, D.A. Dzombak, Challenges and Strategies for the
Use of Saline Water as Cooling Water in Power Plant Cooling
Systems, Carnegie Mellon University and National Energy
Technology Laboratory, Pennsylvania, 2010.
- H. Istepanian, Monitoring of sea water chemical treatment for
cooling system in power utilities–the challenges, Meas. Control,
41 (2008) 54–58.
- R. Stoodley, R. Jose, R. Nuñez, T. Bartz, Field and in-lab
determination of Ca2+ in seawater, J. Chem. Educ., 91 (2014)
1954–1957.
- C.J. Zhu, H.Q. Shao, B.Q. Ma, H. Li, L. Yang, GB/T15452-2009
Industrial Closed-Cycle Cooling Water-Determination of
Calcium and Magnesium-EDTA Titration Method, General
Administration of Quality Supervision, Inspection and
Quarantine of the People’s Republic of China, China National
Standardization Administration, Beijing, 2009.
- H. He, Y. Li, S. Wang, Q. Ma, Y. Pan, A high precision method for
calcium determination in seawater using ion chromatography,
Front. Mar. Sci., 7 (2020) 1–11, doi: 10.3389/fmars.2020.00231.
- M. Meléndez, E.P. Nesterenko, P.N. Nesterenko, J.E. Corredor,
Direct chromatographic separation and determination of
calcium and magnesium in seawater and sediment porewaters,
Limnol. Oceanogr. Methods, 11 (2013) 466–474.
- M. Whitfield, J.V. Leyendekkers, Liquid ion-exchange
electrodes as end-point detectors in compleximetric titrations.
determination of calcium and magnesium in the presence of
sodium: theoretical considerations, Anal. Chim. Acta, 45 (1969)
383–398.
- J.-J. Zhu, P.R. Anderson, Performance evaluation of the ISMLR
package for predicting the next day’s influent wastewater
flowrate at Kirie WRP, Water Sci. Technol., 80 (2019) 695−706.
- H. Haimi, M. Mulas, F. Corona, R. Vahala, Data-derived
soft-sensors for biological wastewater treatment plants: an
overview, Environ. Modell. Software, 47 (2013) 88−107.
- J.-J. Zhu, L. Kang, P.R. Anderson, Predicting influent
biochemical oxygen demand: balancing energy demand and
risk management, Water Res., 128 (2018) 304−313.
- Z.F. Wang, Y. Man, Y.S. Hu, J.G. Li, M.N. Hong, P. Cui, A deep
learning based dynamic COD prediction model for urban
sewage, Environ. Sci. Water Res. Technol., 5 (2019) 2210–2218.
- K.B. Newhart, R.W. Holloway, A.S. Hering, T.Y. Cath, Datadriven
performance analyses of wastewater treatment plants: a
review, Water Res., 157 (2019) 498−513.
- P. Agrawal, A. Sinha, S. Kumar, A. Agarwal, A. Banerjee,
V. Govind Kumar Villuri, C.S. Rao Annavarapu, R. Dwivedi,
V. Vardhan Reddy Dera, J. Sinha, S. Pasupuleti, Exploring
artificial intelligence techniques for groundwater quality
assessment, Water, 13 (2021) 1172, doi: 10.3390/w13091172.
- L. Breiman, Random forests, Mach. Learn, 45 (2001) 5–32.
- V.N. Vapnik, An overview of statistical learning theory, IEEE
Trans. Neural Networks, 10 (1999) 988–999.
- H. Yoon, S.-C. Jun, Y. Hyun, G.-O. Bae, K.-K. Lee, A comparative
study of artificial neural networks and support vector machines
for predicting groundwater levels in a coastal aquifer,
J. Hydrol., 396 (2011) 128–138.
- A. Khalil, M.N. Almasri, M. McKee, J.J. Kaluarachchi,
Applicability of statistical learning algorithms in groundwater
quality modeling, Water Resour. Res., 41 (2005) W05010,
doi: 10.1029/2004WR003608.
- M.S. Khan, P. Coulibaly, Application of support vector machine
in lake water level prediction, J. Hydrol. Eng., 11 (2006) 199–205.
- S.Y. Liong, C. Sivapragasam, Flood stage forecasting with
support vector machines, J. Am. Water Resour. Assoc., 38 (2002)
173–186.
- R.M. Lewis, V. Torczon, A globally convergent augmented
Lagrangian grid search algorithm for optimization with
general constraints and simple bounds, Siam J. Optim.,
12 (2002) 1075–1089.
- K.H. Cho, J.-H. Kang, S.J. Ki, Y. Park, S.M. Cha, J.H. Kim,
Determination of the optimal parameters in regression
models for the prediction of chlorophyll-a: a case study of
the Yeongsan Reservoir, Korea., Sci. Total Environ., 407 (2009)
2536–2545.
- W. Wang, Z. Xu, W. Lu, X. Zhang, Determination of the
spread parameter in the Gaussian kernel for classification and
regression, Neurocomputing, 55 (2003) 643–663.
- A. Kiparissides, S.S. Kucherenko, A. Mantalaris,
E.N. Pistikopoulos, Global sensitivity analysis challenges in
biological systems modeling, Ind. Eng. Chem. Res., 48 (2009)
7168–7180.
- A. Mokhtari, H.C. Frey, Sensitivity analysis of a twodimensional
probabilistic risk assessment model using
analysis of variance, Risk Anal.: An Int. J., Off. Publ. Soc.
Risk Anal., 25 (2010) 1511–1529.
- R.M. Balabin, E.I. Lomakina, Support vector machine regression
(LS-SVM)—an alternative to artificial neural networks
(ANNs) for the analysis of quantum chemistry data?, Phys.
Chem. Chem. Phys., 13 (2011) 11710–11718.
- A. Zita, M. Hermansson, Effects of ionic strength on bacterial
adhesion and stability of flocs in a wastewater activated
sludge system, Appl. Environ. Microbiol., 60 (1994) 3041–3048.