References

  1. T. Oki, S. Kanae, Global hydrological cycles and world water resources retentate, Science, 313 (2006) 1068–1072.
  2. D.M. Nester, Salt water cooling tower, Chem. Eng. Prog., 67 (1971) 7.
  3. National Seawater Utilization Report, Ministry of Natural Resources, Beijing, 2021.
  4. R. Daniel, J.F. Casanueva, N. Enrique, Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system, Appl. Therm. Eng., 85 (2015) 124–134.
  5. L. Zhang, D.A. Dzombak, Challenges and Strategies for the Use of Saline Water as Cooling Water in Power Plant Cooling Systems, Carnegie Mellon University and National Energy Technology Laboratory, Pennsylvania, 2010.
  6. H. Istepanian, Monitoring of sea water chemical treatment for cooling system in power utilities–the challenges, Meas. Control, 41 (2008) 54–58.
  7. R. Stoodley, R. Jose, R. Nuñez, T. Bartz, Field and in-lab determination of Ca2+ in seawater, J. Chem. Educ., 91 (2014) 1954–1957.
  8. C.J. Zhu, H.Q. Shao, B.Q. Ma, H. Li, L. Yang, GB/T15452-2009 Industrial Closed-Cycle Cooling Water-Determination of Calcium and Magnesium-EDTA Titration Method, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration, Beijing, 2009.
  9. H. He, Y. Li, S. Wang, Q. Ma, Y. Pan, A high precision method for calcium determination in seawater using ion chromatography, Front. Mar. Sci., 7 (2020) 1–11, doi: 10.3389/fmars.2020.00231.
  10. M. Meléndez, E.P. Nesterenko, P.N. Nesterenko, J.E. Corredor, Direct chromatographic separation and determination of calcium and magnesium in seawater and sediment porewaters, Limnol. Oceanogr. Methods, 11 (2013) 466–474.
  11. M. Whitfield, J.V. Leyendekkers, Liquid ion-exchange electrodes as end-point detectors in compleximetric titrations. determination of calcium and magnesium in the presence of sodium: theoretical considerations, Anal. Chim. Acta, 45 (1969) 383–398.
  12. J.-J. Zhu, P.R. Anderson, Performance evaluation of the ISMLR package for predicting the next day’s influent wastewater flowrate at Kirie WRP, Water Sci. Technol., 80 (2019) 695−706.
  13. H. Haimi, M. Mulas, F. Corona, R. Vahala, Data-derived soft-sensors for biological wastewater treatment plants: an overview, Environ. Modell. Software, 47 (2013) 88−107.
  14. J.-J. Zhu, L. Kang, P.R. Anderson, Predicting influent biochemical oxygen demand: balancing energy demand and risk management, Water Res., 128 (2018) 304−313.
  15. Z.F. Wang, Y. Man, Y.S. Hu, J.G. Li, M.N. Hong, P. Cui, A deep learning based dynamic COD prediction model for urban sewage, Environ. Sci. Water Res. Technol., 5 (2019) 2210–2218.
  16. K.B. Newhart, R.W. Holloway, A.S. Hering, T.Y. Cath, Datadriven performance analyses of wastewater treatment plants: a review, Water Res., 157 (2019) 498−513.
  17. P. Agrawal, A. Sinha, S. Kumar, A. Agarwal, A. Banerjee, V. Govind Kumar Villuri, C.S. Rao Annavarapu, R. Dwivedi, V. Vardhan Reddy Dera, J. Sinha, S. Pasupuleti, Exploring artificial intelligence techniques for groundwater quality assessment, Water, 13 (2021) 1172, doi: 10.3390/w13091172.
  18. L. Breiman, Random forests, Mach. Learn, 45 (2001) 5–32.
  19. V.N. Vapnik, An overview of statistical learning theory, IEEE Trans. Neural Networks, 10 (1999) 988–999.
  20. H. Yoon, S.-C. Jun, Y. Hyun, G.-O. Bae, K.-K. Lee, A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer, J. Hydrol., 396 (2011) 128–138.
  21. A. Khalil, M.N. Almasri, M. McKee, J.J. Kaluarachchi, Applicability of statistical learning algorithms in groundwater quality modeling, Water Resour. Res., 41 (2005) W05010, doi: 10.1029/2004WR003608.
  22. M.S. Khan, P. Coulibaly, Application of support vector machine in lake water level prediction, J. Hydrol. Eng., 11 (2006) 199–205.
  23. S.Y. Liong, C. Sivapragasam, Flood stage forecasting with support vector machines, J. Am. Water Resour. Assoc., 38 (2002) 173–186.
  24. R.M. Lewis, V. Torczon, A globally convergent augmented Lagrangian grid search algorithm for optimization with general constraints and simple bounds, Siam J. Optim., 12 (2002) 1075–1089.
  25. K.H. Cho, J.-H. Kang, S.J. Ki, Y. Park, S.M. Cha, J.H. Kim, Determination of the optimal parameters in regression models for the prediction of chlorophyll-a: a case study of the Yeongsan Reservoir, Korea., Sci. Total Environ., 407 (2009) 2536–2545.
  26. W. Wang, Z. Xu, W. Lu, X. Zhang, Determination of the spread parameter in the Gaussian kernel for classification and regression, Neurocomputing, 55 (2003) 643–663.
  27. A. Kiparissides, S.S. Kucherenko, A. Mantalaris, E.N. Pistikopoulos, Global sensitivity analysis challenges in biological systems modeling, Ind. Eng. Chem. Res., 48 (2009) 7168–7180.
  28. A. Mokhtari, H.C. Frey, Sensitivity analysis of a twodimensional probabilistic risk assessment model using analysis of variance, Risk Anal.: An Int. J., Off. Publ. Soc. Risk Anal., 25 (2010) 1511–1529.
  29. R.M. Balabin, E.I. Lomakina, Support vector machine regression (LS-SVM)—an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?, Phys. Chem. Chem. Phys., 13 (2011) 11710–11718.
  30. A. Zita, M. Hermansson, Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system, Appl. Environ. Microbiol., 60 (1994) 3041–3048.