References

  1. T.Y. Gao, H.M. Zhang, X.T. Xu, J.H. Teng, Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading, Water Res., 190 (2021) 116679, doi: 10.1016/j.watres.2020.116679.
  2. C. Sun, Q.L. Yu, Z.Q. Zhao, Y.B. Zhang, Enhancing photosynthetic CO2 fixation in microbial electrolysis cell (MEC)- based anaerobic digestion for the in-situ biogas upgrading, Chem. Eng. J., 462 (2023) 142341, doi: 10.1016/j.cej.2023.142341.
  3. M. Sobhi, J.B. Guo, M.S. Gaballah, B.W. Li, J.B. Zheng, X. Cui, H. Sun, R.J. Dong, Selecting the optimal nutrients recovery application for a biogas slurry based on its characteristics and the local environmental conditions: a critical review, Sci. Total Environ., 814 (2022) 152700, doi: 10.1016/j.scitotenv.2021.152700.
  4. P.P. Wang, X. Zhang, S.G. Gouda, Q.X. Yuan, Humidification–dehumidification process used for the concentration and nutrient recovery of biogas slurry, J. Cleaner Prod., 247 (2020) 119142, doi: 10.1016/j.jclepro.2019.119142.
  5. M. Mondor, L. Masse, D. Ippersiel, F. Lamarche, D. Masse, Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure, Bioresour. Technol., 99 (2008) 7363–7368.
  6. M. Mondor, D. Ippersiel, F. Lamarche, L. Masse, Fouling characterization of electrodialysis membranes used for the recovery and concentration of ammonia from swine manure, Bioresour. Technol., 100 (2009) 566–571.
  7. H. Luo, T. Lyu, A. Muhmood, Y. Xue, H. Wu, F. Meers, R. Dong, S. Wu, Effect of flocculation pre-treatment on membrane nutrient recovery of digested chicken slurry: mitigating suspended solids and retaining nutrients, Chem. Eng. J., 352 (2018) 855–862.
  8. M.R. Bilad, N.I. Mat Nawi, D.D. Subramaniam, N. Shamsuddin, A.L. Khan, J. Jaafar, A.B.D. Nandiyanto, Low-pressure submerged membrane filtration for potential reuse of detergent and water from laundry wastewater, J. Water Process Eng., 369 (2020) 101264, doi: 10.1016/j.jwpe.2020.101264.
  9. S. Hube, M. Eskafi, K.F. Hrafnkelsdottir, B. Bjarnadottir, M.A. Bjarnadottir, S. Axelsdottir, B. Wu, Direct membrane filtration for wastewater treatment and resource recovery: a review, Sci. Total Environ., 710 (2020) 136375, doi: 10.1016/j.scitotenv.2019.136375.
  10. J. Thuvander, A.-S. Jönsson, Techno-economic impact of air sparging prior to purification of alkaline extracted wheat bran hemicelluloses by membrane filtration, Sep. Purif. Technol., 253 (2020) 117498, doi: 10.1016/j.seppur.2020.117498.
  11. Z.Z. Zhou, L.H. Chen, Q.G. Wu, T. Zheng, H.R. Yuan, N. Peng, M.Y. He, The valorization of biogas slurry with a pilot dual stage reverse osmosis membrane process, Chem. Eng. Res. Des., 142 (2019) 133–142.
  12. H.N. Ruan, Z.R. Yang, J.Y. Lin, J.N. Shen, J.B. Ji, C.J. Gao, B.V. Bruggen, Biogas slurry concentration hybrid membrane process: pilot-testing and RO membrane cleaning, Desalination, 368 (2015) 171–180.
  13. L.P. Gu, X. Tang, Y. Sun, H.J. Kou, Bioavailability of dissolved organic matter in biogas slurry enhanced by catalytic ozonation combined with membrane separation, Ecotoxicol. Environ. Saf., 196 (2020) 110547, doi: 10.1016/j.ecoenv.2020.110547.
  14. J.T. Martin, G. Kolliopoulos, V.G. Papangelakis, An improved model for membrane characterization in forward osmosis, J. Membr. Sci., 598 (2020) 117–126.
  15. S. Lee, Y. Kim, J. Park, H.K. Shon, S. Hong, Treatment of medical radioactive liquid waste using forward osmosis (FO) membrane process, J. Membr. Sci., 556 (2018) 238–247.
  16. X. Wang, V.W.C. Chang, C.Y. Tang, Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future, J. Membr. Sci., 504 (2016) 113–132.
  17. C. Boo, M. Elimelech, S. Hong, Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation, J. Membr. Sci., 444 (2013) 148–156.
  18. M. Qiu, C.J. He, Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer, J. Hazard. Mater., 367 (2019) 339–347.
  19. P. Mondal, A.T.K. Tran, B. Van der Bruggen, Removal of As(V) from simulated groundwater using forward osmosis: effect of competing and coexisting solutes, Desalination, 348 (2014) 33–38.
  20. Y. Cui, Q. Ge, X.-Y. Liu, T.-S. Chung, Novel forward osmosis process to effectively remove heavy metal ions, J. Membr. Sci., 467 (2014) 188–194.
  21. Y. Dong, Z.W. Wang, C.W. Zhu, Q.Y. Wang, J.X. Tang, Z.C. Wu, A forward osmosis membrane system for the post-treatment of MBR-treated landfill leachate, J. Membr. Sci., 471 (2014) 192–200.
  22. S. Iskander, S.Q. Zou, B. Brazil, J.T. Novak, Z. He, Energy consumption by forward osmosis treatment of landfill leachate for water recovery, Waste Manage., 63 (2017) 284–291.
  23. M. Qin, H. Molitor, B. Brazil, J.T. Novak, Z. He, Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system, Bioresour. Technol., 200 (2016) 485–492.
  24. A.J. Ansari, F.I. Hai, W.E. Price, L.D. Nghiem, Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis, Sep. Purif. Technol., 163 (2016) 1–7.
  25. M.T. Vu, W.E. Price, T. He, X.W. Zhang, L.D. Nghiem, Seawaterdriven forward osmosis for pre-concentrating nutrients in digested sludge centrate, J. Environ. Manage., 247 (2019) 135–139.
  26. J.L. Soler-Cabezas, J.A. Mendoza-Roca, M.C. Vincent-Vela, M.J. Luján-Facundo, L. Pastor-Alcañiz, Simultaneous concentration of nutrients from anaerobically digested sludge centrate and pre-treatment of industrial effluents by forward osmosis, Sep. Purif. Technol., 193 (2018) 289–296.
  27. D.R. Kashyap, K. Dadhich, S.K. Sharma, Biomethanation under psychrophilic conditions: a review, Bioresour. Technol., 87 (2003) 147–153.
  28. M. Xie, M. Price, I. Nghiem, M. Elimelech, Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis, J. Membr. Sci., 438 (2013) 57–64.
  29. M.L. Xu, Q. Ye, Y.G. Li, Y.Q. Song, F. Xiao, Optimization of forward osmosis process for concentration of biogas slurry, Trans. Chin. Soc. Agric. Eng., 32 (2016) 193–198.
  30. H.N. Li, Z.W. Shi, C.X. Zhu, Concentration of biogas slurry with forward osmosis technology, Trans. Chin. Soc. Agric. Eng., 24 (2014) 240–245.
  31. Y. Li, X.M. Xie, R.X. Yin, Q.Z. Dong, Q.Q. Wei, B.X. Zhang, Effects of different draw solutions on biogas slurry concentration in forward osmosis membrane: performance and membrane fouling, Membrane, 12 (2022) 476–483.
  32. X.H. Zhang, Q.G. Li, J. Wang, J. Li, C.W. Zhao, D.Y. Hou, Effects of feed solution pH and draw solution concentration on the performance of phenolic compounds removal in forward osmosis process, J. Environ. Chem. Eng., 5 (2017) 2508–2514.
  33. G. Blandin, H. Vervoort, P. Le-Clech, A.R.D. Verliefde, Fouling and cleaning of high permeability forward osmosis membranes, J. Water Process Eng., 9 (2016) 161–169.
  34. P. Zhao, Q.Y. Yue, B.Y. Gao, J.J. Kong, H.Y. Rong, P. Liu, H.K. Shon, Q. Li, Influence of different ion types and membrane orientations on the forward osmosis performance, Desalination, 344 (2014) 123–128.
  35. J. Heo, K.H. Chu, N. Her, J. Im, Y.G. Park, J. Cho, S. Sarp, A. Jang, M. Jang, Y. Yoon, Organic fouling and reverse solute selectivity in forward osmosis: role of working temperature and inorganic draw solutions, Desalination, 389 (2016) 162–170.
  36. P. Xiao, J. Li, Y.W. Ren, X. Wang, A comprehensive study of factors affecting fouling behavior in forward osmosis, Colloids Surf., A, 499 (2016) 163–172.
  37. M.R. Chowdhury, J.R. McCutcheon, Elucidating the impact of temperature gradients across membranes during forward osmosis: coupling heat and mass transfer models for better prediction of real osmotic systems, J. Membr. Sci., 553 (2018) 189–199.
  38. S. Chintalacheruvu, Y. Ren, J. Maisonneuve, Effectively using heat to thermally enhance pressure retarded osmosis, Desalination, 556 (2023) 116570, doi: 10.1016/j.desal.2023.116570.
  39. L. Feng, L. Xie, G. Suo, X. Shao, T. Dong, Influence of temperature on the performance of forward osmosis using ammonium bicarbonate as draw solute, Trans. Tianjin Univ., 24 (2018) 571–579.
  40. A.H. Hawari, N. Kama, A. Altaee, Combined influence of temperature and flow rate of feeds on the performance of forward osmosis, Desalination, 398 (2016) 98–105.
  41. Y. Kim, S. Lee, H.K. Shon, S. Hong, Organic fouling mechanisms in forward osmosis membrane process under elevated feed and draw solution temperatures, Desalination, 355 (2015) 169–177.
  42. M.I. Dova, K.B. Petrotos, H.N. Lazarides, On the direct osmotic concentration of liquid foods. Part Ⅰ: impact of process parameters on process performance, J. Food Eng., 78 (2007) 422–430.
  43. N.T. Hancock, W.A. Phillip, M. Elimelech, T.Y. Cath, Bidirectional permeation of electrolytes in osmotically driven membrane processes, Environ. Sci. Technol., 45 (2011) 10642–10651.