References
- T.Y. Gao, H.M. Zhang, X.T. Xu, J.H. Teng, Integrating microbial
electrolysis cell based on electrochemical carbon dioxide
reduction into anaerobic osmosis membrane reactor for biogas
upgrading, Water Res., 190 (2021) 116679, doi: 10.1016/j.watres.2020.116679.
- C. Sun, Q.L. Yu, Z.Q. Zhao, Y.B. Zhang, Enhancing photosynthetic
CO2 fixation in microbial electrolysis cell (MEC)-
based anaerobic digestion for the in-situ biogas upgrading,
Chem. Eng. J., 462 (2023) 142341, doi: 10.1016/j.cej.2023.142341.
- M. Sobhi, J.B. Guo, M.S. Gaballah, B.W. Li, J.B. Zheng, X. Cui,
H. Sun, R.J. Dong, Selecting the optimal nutrients recovery
application for a biogas slurry based on its characteristics and
the local environmental conditions: a critical review, Sci. Total
Environ., 814 (2022) 152700, doi: 10.1016/j.scitotenv.2021.152700.
- P.P. Wang, X. Zhang, S.G. Gouda, Q.X. Yuan, Humidification–dehumidification process used for the concentration and
nutrient recovery of biogas slurry, J. Cleaner Prod., 247 (2020)
119142, doi: 10.1016/j.jclepro.2019.119142.
- M. Mondor, L. Masse, D. Ippersiel, F. Lamarche, D. Masse,
Use of electrodialysis and reverse osmosis for the recovery
and concentration of ammonia from swine manure, Bioresour.
Technol., 99 (2008) 7363–7368.
- M. Mondor, D. Ippersiel, F. Lamarche, L. Masse, Fouling
characterization of electrodialysis membranes used for the
recovery and concentration of ammonia from swine manure,
Bioresour. Technol., 100 (2009) 566–571.
- H. Luo, T. Lyu, A. Muhmood, Y. Xue, H. Wu, F. Meers, R. Dong,
S. Wu, Effect of flocculation pre-treatment on membrane
nutrient recovery of digested chicken slurry: mitigating
suspended solids and retaining nutrients, Chem. Eng. J.,
352 (2018) 855–862.
- M.R. Bilad, N.I. Mat Nawi, D.D. Subramaniam, N. Shamsuddin,
A.L. Khan, J. Jaafar, A.B.D. Nandiyanto, Low-pressure submerged
membrane filtration for potential reuse of detergent
and water from laundry wastewater, J. Water Process Eng.,
369 (2020) 101264, doi: 10.1016/j.jwpe.2020.101264.
- S. Hube, M. Eskafi, K.F. Hrafnkelsdottir, B. Bjarnadottir,
M.A. Bjarnadottir, S. Axelsdottir, B. Wu, Direct membrane
filtration for wastewater treatment and resource recovery: a
review, Sci. Total Environ., 710 (2020) 136375, doi: 10.1016/j.scitotenv.2019.136375.
- J. Thuvander, A.-S. Jönsson, Techno-economic impact of air
sparging prior to purification of alkaline extracted wheat bran
hemicelluloses by membrane filtration, Sep. Purif. Technol.,
253 (2020) 117498, doi: 10.1016/j.seppur.2020.117498.
- Z.Z. Zhou, L.H. Chen, Q.G. Wu, T. Zheng, H.R. Yuan, N. Peng,
M.Y. He, The valorization of biogas slurry with a pilot dual
stage reverse osmosis membrane process, Chem. Eng. Res. Des.,
142 (2019) 133–142.
- H.N. Ruan, Z.R. Yang, J.Y. Lin, J.N. Shen, J.B. Ji, C.J. Gao,
B.V. Bruggen, Biogas slurry concentration hybrid membrane
process: pilot-testing and RO membrane cleaning, Desalination,
368 (2015) 171–180.
- L.P. Gu, X. Tang, Y. Sun, H.J. Kou, Bioavailability of dissolved
organic matter in biogas slurry enhanced by catalytic ozonation
combined with membrane separation, Ecotoxicol. Environ.
Saf., 196 (2020) 110547, doi: 10.1016/j.ecoenv.2020.110547.
- J.T. Martin, G. Kolliopoulos, V.G. Papangelakis, An improved
model for membrane characterization in forward osmosis,
J. Membr. Sci., 598 (2020) 117–126.
- S. Lee, Y. Kim, J. Park, H.K. Shon, S. Hong, Treatment of medical
radioactive liquid waste using forward osmosis (FO) membrane
process, J. Membr. Sci., 556 (2018) 238–247.
- X. Wang, V.W.C. Chang, C.Y. Tang, Osmotic membrane
bioreactor (OMBR) technology for wastewater treatment and
reclamation: advances, challenges, and prospects for the future,
J. Membr. Sci., 504 (2016) 113–132.
- C. Boo, M. Elimelech, S. Hong, Fouling control in a forward
osmosis process integrating seawater desalination and
wastewater reclamation, J. Membr. Sci., 444 (2013) 148–156.
- M. Qiu, C.J. He, Efficient removal of heavy metal ions by
forward osmosis membrane with a polydopamine modified
zeolitic imidazolate framework incorporated selective layer,
J. Hazard. Mater., 367 (2019) 339–347.
- P. Mondal, A.T.K. Tran, B. Van der Bruggen, Removal of As(V)
from simulated groundwater using forward osmosis: effect
of competing and coexisting solutes, Desalination, 348 (2014)
33–38.
- Y. Cui, Q. Ge, X.-Y. Liu, T.-S. Chung, Novel forward osmosis
process to effectively remove heavy metal ions, J. Membr. Sci.,
467 (2014) 188–194.
- Y. Dong, Z.W. Wang, C.W. Zhu, Q.Y. Wang, J.X. Tang, Z.C. Wu,
A forward osmosis membrane system for the post-treatment
of MBR-treated landfill leachate, J. Membr. Sci., 471 (2014)
192–200.
- S. Iskander, S.Q. Zou, B. Brazil, J.T. Novak, Z. He, Energy
consumption by forward osmosis treatment of landfill leachate
for water recovery, Waste Manage., 63 (2017) 284–291.
- M. Qin, H. Molitor, B. Brazil, J.T. Novak, Z. He, Recovery of
nitrogen and water from landfill leachate by a microbial
electrolysis cell-forward osmosis system, Bioresour. Technol.,
200 (2016) 485–492.
- A.J. Ansari, F.I. Hai, W.E. Price, L.D. Nghiem, Phosphorus
recovery from digested sludge centrate using seawater-driven
forward osmosis, Sep. Purif. Technol., 163 (2016) 1–7.
- M.T. Vu, W.E. Price, T. He, X.W. Zhang, L.D. Nghiem, Seawaterdriven
forward osmosis for pre-concentrating nutrients in
digested sludge centrate, J. Environ. Manage., 247 (2019)
135–139.
- J.L. Soler-Cabezas, J.A. Mendoza-Roca, M.C. Vincent-Vela,
M.J. Luján-Facundo, L. Pastor-Alcañiz, Simultaneous concentration
of nutrients from anaerobically digested sludge
centrate and pre-treatment of industrial effluents by forward
osmosis, Sep. Purif. Technol., 193 (2018) 289–296.
- D.R. Kashyap, K. Dadhich, S.K. Sharma, Biomethanation
under psychrophilic conditions: a review, Bioresour. Technol.,
87 (2003) 147–153.
- M. Xie, M. Price, I. Nghiem, M. Elimelech, Effects of feed and
draw solution temperature and transmembrane temperature
difference on the rejection of trace organic contaminants by
forward osmosis, J. Membr. Sci., 438 (2013) 57–64.
- M.L. Xu, Q. Ye, Y.G. Li, Y.Q. Song, F. Xiao, Optimization of
forward osmosis process for concentration of biogas slurry,
Trans. Chin. Soc. Agric. Eng., 32 (2016) 193–198.
- H.N. Li, Z.W. Shi, C.X. Zhu, Concentration of biogas slurry
with forward osmosis technology, Trans. Chin. Soc. Agric. Eng.,
24 (2014) 240–245.
- Y. Li, X.M. Xie, R.X. Yin, Q.Z. Dong, Q.Q. Wei, B.X. Zhang, Effects
of different draw solutions on biogas slurry concentration
in forward osmosis membrane: performance and membrane
fouling, Membrane, 12 (2022) 476–483.
- X.H. Zhang, Q.G. Li, J. Wang, J. Li, C.W. Zhao, D.Y. Hou,
Effects of feed solution pH and draw solution concentration
on the performance of phenolic compounds removal in
forward osmosis process, J. Environ. Chem. Eng., 5 (2017)
2508–2514.
- G. Blandin, H. Vervoort, P. Le-Clech, A.R.D. Verliefde,
Fouling and cleaning of high permeability forward osmosis
membranes, J. Water Process Eng., 9 (2016) 161–169.
- P. Zhao, Q.Y. Yue, B.Y. Gao, J.J. Kong, H.Y. Rong, P. Liu,
H.K. Shon, Q. Li, Influence of different ion types and
membrane orientations on the forward osmosis performance,
Desalination, 344 (2014) 123–128.
- J. Heo, K.H. Chu, N. Her, J. Im, Y.G. Park, J. Cho, S. Sarp,
A. Jang, M. Jang, Y. Yoon, Organic fouling and reverse solute
selectivity in forward osmosis: role of working temperature and
inorganic draw solutions, Desalination, 389 (2016) 162–170.
- P. Xiao, J. Li, Y.W. Ren, X. Wang, A comprehensive study of
factors affecting fouling behavior in forward osmosis, Colloids
Surf., A, 499 (2016) 163–172.
- M.R. Chowdhury, J.R. McCutcheon, Elucidating the impact
of temperature gradients across membranes during forward
osmosis: coupling heat and mass transfer models for better
prediction of real osmotic systems, J. Membr. Sci., 553 (2018)
189–199.
- S. Chintalacheruvu, Y. Ren, J. Maisonneuve, Effectively
using heat to thermally enhance pressure retarded osmosis,
Desalination, 556 (2023) 116570, doi: 10.1016/j.desal.2023.116570.
- L. Feng, L. Xie, G. Suo, X. Shao, T. Dong, Influence of
temperature on the performance of forward osmosis using
ammonium bicarbonate as draw solute, Trans. Tianjin Univ.,
24 (2018) 571–579.
- A.H. Hawari, N. Kama, A. Altaee, Combined influence of
temperature and flow rate of feeds on the performance of
forward osmosis, Desalination, 398 (2016) 98–105.
- Y. Kim, S. Lee, H.K. Shon, S. Hong, Organic fouling mechanisms
in forward osmosis membrane process under elevated feed
and draw solution temperatures, Desalination, 355 (2015)
169–177.
- M.I. Dova, K.B. Petrotos, H.N. Lazarides, On the direct
osmotic concentration of liquid foods. Part Ⅰ: impact of process
parameters on process performance, J. Food Eng., 78 (2007)
422–430.
- N.T. Hancock, W.A. Phillip, M. Elimelech, T.Y. Cath, Bidirectional
permeation of electrolytes in osmotically driven membrane
processes, Environ. Sci. Technol., 45 (2011) 10642–10651.