References
- K.Z. Setshedi, M. Bhaumik, M.S. Onyango, A. Maity, High-performance towards Cr(VI) removal using multi-active sites of polypyrrole–graphene oxide nanocomposites: batch and column studies, Chem. Eng. J., 262 (2015) 921–931.
- H. Wang, X. Yuan, Y. Wu, X. Chen, L. Leng, H. Wang, H. Li, G. Zeng, Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr (VI) removal, Chem. Eng. J., 262 (2015) 597–606.
- H. Figueiredo, C. Quintelas, Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites, J. Hazard. Mater., 274 (2014) 287–299.
- R. Khosravi, M. Fazlzadehdavil, B. Barikbin, A.A. Taghizadeh, Removal of hexavalent chromium from aqueous solution by granular and powdered Peganum Harmala, Appl. Surf. Sci., 292 (2014) 670–677.
- J. Guo, Y. Li, R. Dai, Y. Lan, Rapid reduction of Cr (VI) coupling with efficient removal of total chromium in the coexistence of Zn(0) and silica gel, J. Hazard. Mater., 243 (2012) 265–271.
- S. Xu, Y. Zhang, S. Pan, H. Ding, G. Li, Recyclable magnetic photocatalysts of Fe2+/TiO2 hierarchical architecture with effective removal of Cr(VI) under UV light from water, J. Hazard. Mater., 196 (2011) 29–35.
- G. Zelmanov, R. Semiat, Iron (Fe3+) oxide/hydroxide nanoparticles- based agglomerates suspension as adsorbent for chromium (Cr6+) removal from water and recovery, Sep. Purif. Technol., 80 (2011) 330–337.
- M. Kebir, M. Chabani, N. Nasrallah, A. Bensmaili, M. Trari, Coupling adsorption with photocatalysis process for the Cr (VI) removal, Desalination, 270 (2011) 166–173.
- M. Naimi-Joubani, M. Shirzad-Siboni, J.-K. Yang, M. Gholami, M. Farzadkia, Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite, J. Ind. Eng. Chem., 22 (2015) 317–323.
- M. Sabonian, M.A. Behnajady, Artificial neural network modeling of Cr (VI) photocatalytic reduction with TiO2-P25 nanoparticles using the results obtained from response surface methodology optimization, Desal. Water Treat., 56 (2015) 2906–2916.
- H. Mekatel, S. Amokrane, B. Bellal, M. Trari, D. Nibou, Photocatalytic reduction of Cr(VI) on nanosized Fe2O3 supported on natural Algerian clay: characteristics, kinetic and thermodynamic study, Chem. Eng. J., 200 (2012) 611–618.
- S. Chakrabarti, B. Chaudhuri, S. Bhattacharjee, A.K. Ray, B.K. Dutta, Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst, Chem. Eng. J., 153 (2009) 86–93.
- S. Tuprakay, W. Liengcharernsit, Lifetime and regeneration of immobilized titania for photocatalytic removal of aqueous hexavalent chromium, J. Hazard. Mater., 124 (2005) 53–58.
- H. Eskandarloo, A. Badiei, M.A. Behnajady, G.M. Ziarani, Minimization of electrical energy consumption in the photocatalytic reduction of Cr (VI) by using immobilized Mg, Ag co-impregnated TiO2 nanoparticles, RSC Adv., 4 (2014) 28587–28596.
- A. Di Paola, E. García-López, G. Marcì, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater., 211 (2012) 3–29.
- D. Shao, X. Wang, Q. Fan, Photocatalytic reduction of Cr (VI) to Cr (III) in solution containing ZnO or ZSM-5 zeolite using oxalate as model organic compound in environment, Micropor. Mesopor. Mater., 117 (2009) 243–248.
- B. İkizler, S.M. Peker, Synthesis of TiO2 coated ZnO nanorod arrays and their stability in photocatalytic flow reactors, Thin Solid Films, (2015).
- C. Yu, K. Yang, Y. Xie, Q. Fan, C.Y. Jimmy, Q. Shu, C. Wang, Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability, Nanoscale., 5 (2013) 2142–2151.
- S. Anandan, A. Vinu, N. Venkatachalam, B. Arabindoo, V. Murugesan, Photocatalytic activity of ZnO impregnated Hβ and mechanical mix of ZnO/Hβ in the degradation of monocrotophos in aqueous solution, J. Mol. Catal. A: Chem., 256 (2006) 312–320.
- R. Cai, J.-g. Wu, L. Sun, Y.-j. Liu, T. Fang, S. Zhu, S.-y. Li,Y. Wang, L.-f. Guo, C.-e. Zhao, 3D graphene/ZnO composite with enhanced photocatalytic activity, Mater. Des., 90 (2016) 839–844.
- T. Hirakawa, P.V. Kamat, Charge separation and catalytic activity of Ag@ TiO2 core-shell composite clusters under UV-irradiation, J. Am. Chem. Soc., 127 (2005) 3928–3934.
- P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, Au−ZnO hybrid nanopyramids and their photocatalytic properties, J. Am. Chem. Soc., 133 (2011) 5660–5663.
- S. Elder, F. Cot, Y. Su, S. Heald, A. Tyryshkin, M. Bowman, Y. Gao, et al., The discovery and study of nanocrystalline TiO2-(MoO3) core-shell materials, J. Am. Chem. Soc., 122 (2000) 5138–5146.
- J. Yang, J. Dai, J. Li, Visible-light-induced photocatalytic reduction of Cr (VI) with coupled Bi2O3/TiO2 photocatalyst and the synergistic bisphenol A oxidation, Environ. Sci. Pollut. Res., 20 (2013) 2435–2447.
- J. Chen, Z. Feng, P. Ying, C. Li, ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies, J. Phys. Chem. B, 108 (2004) 12669–12676.
- A. Nezamzadeh-Ejhieh, S. Khorsandi, Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite, J. Ind. Eng. Chem., 20 (2014) 937–946.
- M. Khatamian, Z. Alaji, Efficient adsorption-photodegradation of 4-nitrophenol in aqueous solution by using ZnO/HZSM-5 nanocomposites, Desalination, 286 (2012) 248–253.
- W. Zhang, K. Wang, Y. Yu, H. He, TiO2/HZSM-5 nano-composite photocatalyst: HCl treatment of NaZSM-5 promotes photocatalytic degradation of methyl orange, Chem. Eng. J., 163 (2010) 62–67.
- M. Takeuchi, T. Kimura, M. Hidaka, D. Rakhmawaty, M. Anpo, Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: effect of hydrophobicity of zeolites, J. Catal., 246 (2007) 235–240.
- M. Noorjahan, V.D. Kumari, M. Subrahmanyam, P. Boule, A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film, Appl. Catal. B, 47 (2004) 209–213.
- Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, J. Ma, Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange, Carbon., 50 (2012) 4093–4101.
- M. Bahrami, A. Nezamzadeh-Ejhieh, Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution, Mater. Sci. Semicond. Process., 30 (2015) 275–284.
- C. Wang, H. Shi, Y. Li, Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts, Appl. Surf. Sci., 257 (2011) 6873–6877.
- T.A. Khan, M. Nazir, I. Ali, A. Kumar, Removal of chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent, Arabian J. Chem., (2013).
- M. Qamar, M. Gondal, Z. Yamani, Laser-induced efficient reduction of Cr (VI) catalyzed by ZnO nanoparticles, J. Hazard. Mater., 187 (2011) 258–263.
- W. Ketir, G. Rekhila, M. Trari, A. Amrane, Preparation, characterization and application of CuCrO2/ZnO photocatalysts for the reduction of Cr (VI), J. Environ. Sci., 24 (2012) 2173–2179.
- S. Sadeghi, M. Haghighi, P. Estifaee, Methanol to clean gasoline over nanostructured CuO–ZnO/HZSM-5 catalyst: influence of conventional and ultrasound assisted co-impregnation synthesis on catalytic properties and performance, J. Nat. Gas Sci. Eng., 24 (2015) 302–310.
- J. Lu, D. Schryvers, M. Roeffaers, E. Bartholomeeusen, B. Sels, Microstructure and intergrowth of defects in coffin-shaped ZSM-5 zeolite crystals revealed by FIB-assisted HRTEM.
- G.B.F. Seijger, O.L. Oudshoorn, W.E.J. van Kooten, J.C. Jansen, H. van Bekkum, C.M. van den Bleek, H.P.A. Calis, In situ synthesis of binderless ZSM-5 zeolitic coatings on ceramic foam supports, Micropor. Mesopor. Mater., 39 (2000) 195–204.
- G. Flores, J. Carrillo, J. Luna, R. Martínez, A. Sierra-Fernandez, O. Milosevic, M.E. Rabanal, Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP, Adv. Powder Technol., 25 (2014) 1435–1441.
- F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol, J. Nat. Gas Sci. Eng., 22 (2015) 260–269.
- F. Rahmani, M. Haghighi, Y. Vafaeian, P. Estifaee, Hydrogen production via CO2 reforming of methane over ZrO2-doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method, J. Power Sources., 272 (2014) 816–827.
- S. Aghamohammadi, M. Haghighi, S. Karimipour, A comparative synthesis and physicochemical characterizations of Ni/Al2O3–MgO nanocatalyst via sequential impregnation and sol–gel methods used for CO2 reforming of methane, J. Nanosci. Nanotechnol., 13 (2013) 4872–4882.
- R. Khoshbin, M. Haghighi, Direct syngas to DME as a clean fuel: the beneficial use of ultrasound for the preparation of CuO–ZnO–Al2O3/HZSM-5 nanocatalyst, Chem. Eng. Res. Des., 91 (2013) 1111–1122.
- N. Mohaghegh, M. Tasviri, E. Rahimi, M.R. Gholami, Nano sized ZnO composites: preparation, characterization and application as photocatalysts for degradation of AB92 azo dye, Mater. Sci. Semicond. Process., 21 (2014) 167–179.
- O. Korkuna, R. Leboda, J. Skubiszewska-Zie¸ba, T. Vrublevs’ka, V.M. Gun’ko, J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Micropor. Mesopor. Mater., 87 (2006) 243–254.
- M. Khatamian, B. Divband, A. Jodaei, Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks, Mater. Chem. Phys., 134 (2012) 31–37.
- D.W. Breck, Zeolite molecular sieves, Krieger, Malabar, FL (1984).
- M.A. Behnajady, N. Mansoriieh, N. Modirshahla, M. Shokri, Influence of operational parameters and kinetics analysis on the photocatalytic reduction of Cr(VI) by immobilized ZnO, Environ. Technol., 33 (2012) 265–271.
- D.P. Das, K. Parida, B.R. De, Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation, J. Mol. Catal. A: Chem., 245 (2006) 217–224.
- S. Liu, Removal of copper (VI) from aqueous solution by Ag/TiO2 photocatalysis, Bull. Environ. Contam. Toxicol., 74 (2005) 706–714.
- T. Liu, Z.-L. Wang, X. Yan, B. Zhang, Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron, Chem. Eng. J., 245 (2014) 34–40.
- M.A. Behnajady, S. Bimeghdar, Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr (VI), Chem. Eng. J., 239 (2014) 105–113.
- Y. Ku, I.-L. Jung, Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water Res., 35 (2001) 135–142.
- Q. Wu, J. Zhao, G. Qin, C. Wang, X. Tong, S. Xue, Photocatalytic reduction of Cr (VI) with TiO2 film under visible light, Appl. Catal. B, 142 (2013) 142–148.
- Q. Sun, H. Li, S. Zheng, Z. Sun, Characterizations of nano-TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI), Appl. Surf. Sci., 311 (2014) 369–376.
- H.-T. Hsu, S.-S. Chen, Y.-F. Tang, H.-C. Hsi, Enhanced photocatalytic activity of chromium (VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes, J. Hazard. Mater., 248 (2013) 97–106.
- A. Idris, N. Hassan, N.S.M. Ismail, E. Misran, N.M. Yusof, A.-F. Ngomsik, A. Bee, Photocatalytic magnetic separable beads for chromium (VI) reduction, Water Res., 44 (2010) 1683–1688.
- Q. Wang, J. Hui, L. Yang, H. Huang, Y. Cai, S. Yin, Y. Ding, Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation, Appl. Surf. Sci., 289 (2014) 224–229.
- X. Huang, J. Yuan, J. Shi, W. Shangguan, Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts, J. Hazard. Mater., 171 (2009) 827–832.
- X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, et al., UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (VI), Chem. Eng. J., 183 (2012) 238–243.
- M.H. Farzana, S. Meenakshi, Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr (VI), Int. J. Biol. Macromol., 72 (2015) 1265–1271.
- R.C. Pawar, C.S. Lee, Sensitization of CdS nanoparticles onto reduced graphene oxide (RGO) fabricated by chemical bath deposition method for effective removal of Cr (VI), Mater. Chem. Phys., 141 (2013) 686–693.
- M. Shirzad-Siboni, M. Farrokhi, R. Darvishi Cheshmeh Soltani, A. Khataee, S. Tajassosi, Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on kaolin, Ind. Eng. Chem. Res., 53 (2014) 1079–1087.
- S. Wei, Y. Chen, Y. Ma, Z. Shao, Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance, J. Mol. Catal. A: Chem., 331 (2010) 112–116.
- M. Shirzad Siboni, M. Samadi, J. Yang, S. Lee, Photocatalytic reduction of Cr (VI) and Ni (II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study, Environ. Technol., 32 (2011) 1573–1579.
- A.R. Esfahani, S. Hojati, A. Azimi, M. Farzadian, A. Khataee, Enhanced hexavalent chromium removal from aqueous solution using a sepiolite-stabilized zero-valent iron nanocomposite: Impact of operational parameters and artificial neural network modeling, J. Taiwan Inst. Chem. Eng., 49 (2015) 172–182.