References

  1. K.Z. Setshedi, M. Bhaumik, M.S. Onyango, A. Maity, High-performance towards Cr(VI) removal using multi-active sites of polypyrrole–graphene oxide nanocomposites: batch and column studies, Chem. Eng. J., 262 (2015) 921–931.
  2. H. Wang, X. Yuan, Y. Wu, X. Chen, L. Leng, H. Wang, H. Li, G. Zeng, Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr (VI) removal, Chem. Eng. J., 262 (2015) 597–606.
  3. H. Figueiredo, C. Quintelas, Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites, J. Hazard. Mater., 274 (2014) 287–299.
  4. R. Khosravi, M. Fazlzadehdavil, B. Barikbin, A.A. Taghizadeh, Removal of hexavalent chromium from aqueous solution by granular and powdered Peganum Harmala, Appl. Surf. Sci., 292 (2014) 670–677.
  5. J. Guo, Y. Li, R. Dai, Y. Lan, Rapid reduction of Cr (VI) coupling with efficient removal of total chromium in the coexistence of Zn(0) and silica gel, J. Hazard. Mater., 243 (2012) 265–271.
  6. S. Xu, Y. Zhang, S. Pan, H. Ding, G. Li, Recyclable magnetic photocatalysts of Fe2+/TiO2 hierarchical architecture with effective removal of Cr(VI) under UV light from water, J. Hazard. Mater., 196 (2011) 29–35.
  7. G. Zelmanov, R. Semiat, Iron (Fe3+) oxide/hydroxide nanoparticles- based agglomerates suspension as adsorbent for chromium (Cr6+) removal from water and recovery, Sep. Purif. Technol., 80 (2011) 330–337.
  8. M. Kebir, M. Chabani, N. Nasrallah, A. Bensmaili, M. Trari, Coupling adsorption with photocatalysis process for the Cr (VI) removal, Desalination, 270 (2011) 166–173.
  9. M. Naimi-Joubani, M. Shirzad-Siboni, J.-K. Yang, M. Gholami, M. Farzadkia, Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite, J. Ind. Eng. Chem., 22 (2015) 317–323.
  10. M. Sabonian, M.A. Behnajady, Artificial neural network modeling of Cr (VI) photocatalytic reduction with TiO2-P25 nanoparticles using the results obtained from response surface methodology optimization, Desal. Water Treat., 56 (2015) 2906–2916.
  11. H. Mekatel, S. Amokrane, B. Bellal, M. Trari, D. Nibou, Photocatalytic reduction of Cr(VI) on nanosized Fe2O3 supported on natural Algerian clay: characteristics, kinetic and thermodynamic study, Chem. Eng. J., 200 (2012) 611–618.
  12. S. Chakrabarti, B. Chaudhuri, S. Bhattacharjee, A.K. Ray, B.K. Dutta, Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst, Chem. Eng. J., 153 (2009) 86–93.
  13. S. Tuprakay, W. Liengcharernsit, Lifetime and regeneration of immobilized titania for photocatalytic removal of aqueous hexavalent chromium, J. Hazard. Mater., 124 (2005) 53–58.
  14. H. Eskandarloo, A. Badiei, M.A. Behnajady, G.M. Ziarani, Minimization of electrical energy consumption in the photocatalytic reduction of Cr (VI) by using immobilized Mg, Ag co-impregnated TiO2 nanoparticles, RSC Adv., 4 (2014) 28587–28596.
  15. A. Di Paola, E. García-López, G. Marcì, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater., 211 (2012) 3–29.
  16. D. Shao, X. Wang, Q. Fan, Photocatalytic reduction of Cr (VI) to Cr (III) in solution containing ZnO or ZSM-5 zeolite using oxalate as model organic compound in environment, Micropor. Mesopor. Mater., 117 (2009) 243–248.
  17. B. İkizler, S.M. Peker, Synthesis of TiO2 coated ZnO nanorod arrays and their stability in photocatalytic flow reactors, Thin Solid Films, (2015).
  18. C. Yu, K. Yang, Y. Xie, Q. Fan, C.Y. Jimmy, Q. Shu, C. Wang, Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability, Nanoscale., 5 (2013) 2142–2151.
  19. S. Anandan, A. Vinu, N. Venkatachalam, B. Arabindoo, V. Murugesan, Photocatalytic activity of ZnO impregnated Hβ and mechanical mix of ZnO/Hβ in the degradation of monocrotophos in aqueous solution, J. Mol. Catal. A: Chem., 256 (2006) 312–320.
  20. R. Cai, J.-g. Wu, L. Sun, Y.-j. Liu, T. Fang, S. Zhu, S.-y. Li,Y. Wang, L.-f. Guo, C.-e. Zhao, 3D graphene/ZnO composite with enhanced photocatalytic activity, Mater. Des., 90 (2016) 839–844.
  21. T. Hirakawa, P.V. Kamat, Charge separation and catalytic activity of Ag@ TiO2 core-shell composite clusters under UV-irradiation, J. Am. Chem. Soc., 127 (2005) 3928–3934.
  22. P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, Au−ZnO hybrid nanopyramids and their photocatalytic properties, J. Am. Chem. Soc., 133 (2011) 5660–5663.
  23. S. Elder, F. Cot, Y. Su, S. Heald, A. Tyryshkin, M. Bowman, Y. Gao, et al., The discovery and study of nanocrystalline TiO2-(MoO3) core-shell materials, J. Am. Chem. Soc., 122 (2000) 5138–5146.
  24. J. Yang, J. Dai, J. Li, Visible-light-induced photocatalytic reduction of Cr (VI) with coupled Bi2O3/TiO2 photocatalyst and the synergistic bisphenol A oxidation, Environ. Sci. Pollut. Res., 20 (2013) 2435–2447.
  25. J. Chen, Z. Feng, P. Ying, C. Li, ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies, J. Phys. Chem. B, 108 (2004) 12669–12676.
  26. A. Nezamzadeh-Ejhieh, S. Khorsandi, Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite, J. Ind. Eng. Chem., 20 (2014) 937–946.
  27. M. Khatamian, Z. Alaji, Efficient adsorption-photodegradation of 4-nitrophenol in aqueous solution by using ZnO/HZSM-5 nanocomposites, Desalination, 286 (2012) 248–253.
  28. W. Zhang, K. Wang, Y. Yu, H. He, TiO2/HZSM-5 nano-composite photocatalyst: HCl treatment of NaZSM-5 promotes photocatalytic degradation of methyl orange, Chem. Eng. J., 163 (2010) 62–67.
  29. M. Takeuchi, T. Kimura, M. Hidaka, D. Rakhmawaty, M. Anpo, Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: effect of hydrophobicity of zeolites, J. Catal., 246 (2007) 235–240.
  30. M. Noorjahan, V.D. Kumari, M. Subrahmanyam, P. Boule, A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film, Appl. Catal. B, 47 (2004) 209–213.
  31. Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, J. Ma, Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange, Carbon., 50 (2012) 4093–4101.
  32. M. Bahrami, A. Nezamzadeh-Ejhieh, Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution, Mater. Sci. Semicond. Process., 30 (2015) 275–284.
  33. C. Wang, H. Shi, Y. Li, Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts, Appl. Surf. Sci., 257 (2011) 6873–6877.
  34. T.A. Khan, M. Nazir, I. Ali, A. Kumar, Removal of chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent, Arabian J. Chem., (2013).
  35. M. Qamar, M. Gondal, Z. Yamani, Laser-induced efficient reduction of Cr (VI) catalyzed by ZnO nanoparticles, J. Hazard. Mater., 187 (2011) 258–263.
  36. W. Ketir, G. Rekhila, M. Trari, A. Amrane, Preparation, characterization and application of CuCrO2/ZnO photocatalysts for the reduction of Cr (VI), J. Environ. Sci., 24 (2012) 2173–2179.
  37. S. Sadeghi, M. Haghighi, P. Estifaee, Methanol to clean gasoline over nanostructured CuO–ZnO/HZSM-5 catalyst: influence of conventional and ultrasound assisted co-impregnation synthesis on catalytic properties and performance, J. Nat. Gas Sci. Eng., 24 (2015) 302–310.
  38. J. Lu, D. Schryvers, M. Roeffaers, E. Bartholomeeusen, B. Sels, Microstructure and intergrowth of defects in coffin-shaped ZSM-5 zeolite crystals revealed by FIB-assisted HRTEM.
  39. G.B.F. Seijger, O.L. Oudshoorn, W.E.J. van Kooten, J.C. Jansen, H. van Bekkum, C.M. van den Bleek, H.P.A. Calis, In situ synthesis of binderless ZSM-5 zeolitic coatings on ceramic foam supports, Micropor. Mesopor. Mater., 39 (2000) 195–204.
  40. G. Flores, J. Carrillo, J. Luna, R. Martínez, A. Sierra-Fernandez, O. Milosevic, M.E. Rabanal, Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP, Adv. Powder Technol., 25 (2014) 1435–1441.
  41. F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol, J. Nat. Gas Sci. Eng., 22 (2015) 260–269.
  42. F. Rahmani, M. Haghighi, Y. Vafaeian, P. Estifaee, Hydrogen production via CO2 reforming of methane over ZrO2-doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method, J. Power Sources., 272 (2014) 816–827.
  43. S. Aghamohammadi, M. Haghighi, S. Karimipour, A comparative synthesis and physicochemical characterizations of Ni/Al2O3–MgO nanocatalyst via sequential impregnation and sol–gel methods used for CO2 reforming of methane, J. Nanosci. Nanotechnol., 13 (2013) 4872–4882.
  44. R. Khoshbin, M. Haghighi, Direct syngas to DME as a clean fuel: the beneficial use of ultrasound for the preparation of CuO–ZnO–Al2O3/HZSM-5 nanocatalyst, Chem. Eng. Res. Des., 91 (2013) 1111–1122.
  45. N. Mohaghegh, M. Tasviri, E. Rahimi, M.R. Gholami, Nano sized ZnO composites: preparation, characterization and application as photocatalysts for degradation of AB92 azo dye, Mater. Sci. Semicond. Process., 21 (2014) 167–179.
  46. O. Korkuna, R. Leboda, J. Skubiszewska-Zie¸ba, T. Vrublevs’ka, V.M. Gun’ko, J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Micropor. Mesopor. Mater., 87 (2006) 243–254.
  47. M. Khatamian, B. Divband, A. Jodaei, Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks, Mater. Chem. Phys., 134 (2012) 31–37.
  48. D.W. Breck, Zeolite molecular sieves, Krieger, Malabar, FL (1984).
  49. M.A. Behnajady, N. Mansoriieh, N. Modirshahla, M. Shokri, Influence of operational parameters and kinetics analysis on the photocatalytic reduction of Cr(VI) by immobilized ZnO, Environ. Technol., 33 (2012) 265–271.
  50. D.P. Das, K. Parida, B.R. De, Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation, J. Mol. Catal. A: Chem., 245 (2006) 217–224.
  51. S. Liu, Removal of copper (VI) from aqueous solution by Ag/TiO2 photocatalysis, Bull. Environ. Contam. Toxicol., 74 (2005) 706–714.
  52. T. Liu, Z.-L. Wang, X. Yan, B. Zhang, Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron, Chem. Eng. J., 245 (2014) 34–40.
  53. M.A. Behnajady, S. Bimeghdar, Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr (VI), Chem. Eng. J., 239 (2014) 105–113.
  54. Y. Ku, I.-L. Jung, Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water Res., 35 (2001) 135–142.
  55. Q. Wu, J. Zhao, G. Qin, C. Wang, X. Tong, S. Xue, Photocatalytic reduction of Cr (VI) with TiO2 film under visible light, Appl. Catal. B, 142 (2013) 142–148.
  56. Q. Sun, H. Li, S. Zheng, Z. Sun, Characterizations of nano-TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI), Appl. Surf. Sci., 311 (2014) 369–376.
  57. H.-T. Hsu, S.-S. Chen, Y.-F. Tang, H.-C. Hsi, Enhanced photocatalytic activity of chromium (VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes, J. Hazard. Mater., 248 (2013) 97–106.
  58. A. Idris, N. Hassan, N.S.M. Ismail, E. Misran, N.M. Yusof, A.-F. Ngomsik, A. Bee, Photocatalytic magnetic separable beads for chromium (VI) reduction, Water Res., 44 (2010) 1683–1688.
  59. Q. Wang, J. Hui, L. Yang, H. Huang, Y. Cai, S. Yin, Y. Ding, Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation, Appl. Surf. Sci., 289 (2014) 224–229.
  60. X. Huang, J. Yuan, J. Shi, W. Shangguan, Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts, J. Hazard. Mater., 171 (2009) 827–832.
  61. X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, et al., UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (VI), Chem. Eng. J., 183 (2012) 238–243.
  62. M.H. Farzana, S. Meenakshi, Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr (VI), Int. J. Biol. Macromol., 72 (2015) 1265–1271.
  63. R.C. Pawar, C.S. Lee, Sensitization of CdS nanoparticles onto reduced graphene oxide (RGO) fabricated by chemical bath deposition method for effective removal of Cr (VI), Mater. Chem. Phys., 141 (2013) 686–693.
  64. M. Shirzad-Siboni, M. Farrokhi, R. Darvishi Cheshmeh Soltani, A. Khataee, S. Tajassosi, Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on kaolin, Ind. Eng. Chem. Res., 53 (2014) 1079–1087.
  65. S. Wei, Y. Chen, Y. Ma, Z. Shao, Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance, J. Mol. Catal. A: Chem., 331 (2010) 112–116.
  66. M. Shirzad Siboni, M. Samadi, J. Yang, S. Lee, Photocatalytic reduction of Cr (VI) and Ni (II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study, Environ. Technol., 32 (2011) 1573–1579.
  67. A.R. Esfahani, S. Hojati, A. Azimi, M. Farzadian, A. Khataee, Enhanced hexavalent chromium removal from aqueous solution using a sepiolite-stabilized zero-valent iron nanocomposite: Impact of operational parameters and artificial neural network modeling, J. Taiwan Inst. Chem. Eng., 49 (2015) 172–182.