References
- N. Takahashi, T. Nakai, Y. Satoh, Y. Katoh, Variation of biodegradability of nitrogenous organic compounds by ozonation, Water Res., 28 (1994) 1563–1570.
- T. Min, B. Linda, C. Aicheng, Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics, Electrochim Acta., 52 (2007) 6517–6524.
- L. Ukrainczyk, M.B. McBride, Oxidation of Phenol in acidic aqueous suspensions of manganese oxide, Clay Clay Miner., 40 (1992) 157.
- S. Nouri, F. Haghseresht, G.Q.M. Lu, Comparison of adsorption capacity of p-cresol and p-nitrophenol by activated carbon in single and double solute, Adsorption, 8(3) (2003) 215–223.
- K. Hanna, I. Beurroies, R. Denoyerl, D. Desplantier-Giscard, A. Galarneu, F. Di Renzo, Sorption of hydrophobic molecules by organic/inorganic mesostructures, J Colloid Interface Sci., 252(2) (2002) 276–283.
- K. Abburi, Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin, J Hazard Mater., 105 (2003) 143–156.
- M. Sarkar, K.P. Acharya, B. Bhattacharya, Removal characteristics of some priority organic pollutants from water in a fixed bed fly ash column, J. Chem. Technol. Biot., 80 (2005) 1349–1355.
- M. Barhoumi, I. Beurroies, R. Denoyel, H. Said, K. Hanna, Co-adsorption of alkylphenols and nonionic surfactants onto kaolinite, Colloid. Surf. A., 219 (2003) 25–33.
- J. Díaz-Gómez, A. Parrales, A. Álvarez, S. Silva-Martínez, D. Colorado, J.A. Hérnandez, Prediction of global solar radiation by artificial neural network based on a meteorological environmental data, Desal. Wat. Treat., 12 (2015) 3210–3217.
- H. Heshmati, M. Torab-Mostaedi, H.G. Galini, A. Heydari, Kinetic, isotherm, and thermodynamic investigations of uranium (VI) adsorption on synthesized ion-exchange chelating resin and prediction with an artificial neural network, Desal.Wat. Treat., 4 (2015) 1076–1087.
- H.R. Vahidian, A.R. Soleymani, J.B. Parsa, Development of a four-layered ANN for simulation of an electrochemical water treatment process, Desal. Wat. Treat., 2 (2014) 388–398.
- R.H. Nia, M. Ghaedi, A.M. Ghaedi, Modeling of reactive orange 12 (RO 12) adsorption onto gold nanoparticle-activated carbon using artificial neural network optimization based on an imperialist competitive algorithm, J. Mol. Liq., 195 (2014) 219–229.
- H. Karim, M. Ghaedi, Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon, J. Ind. Eng. Chem., 20 (2014) 2471–2476.
- E.A. Dil, M. Ghaedi, A. Ghaedi, A. Asfaram, M. Jamshidi, M.K. Purkait, Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activated carbon: kinetics and equilibrium study, J. Taiwan Inst. Chem. E, 59 (2016) 210–220.
- M. Ghaedi, A. Daneshfar, A. Ahmadi, M.S. Momeni, Artificial neural network-genetic algorithm based optimization for the adsorption of phenol red (PR) onto gold and titanium dioxide nanoparticles loaded on activated carbon, J. Ind. Eng. Chem., 21 (2015) 587–598.
- M. Maghsoudi, M. Ghaedi, A. Zinali, A.M. Ghaedi, M.H. Habibi, Artificial neural network (ANN) method for modeling of Sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study, Spectrochim. Acta. A., 21 (2015) 587–598.
- M. Ghaedi, A. Ansari, F. Bahari, A.M. Ghaedi, A. Vafaei, A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye Brilliant Green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon, Spectrochim. Acta. A., 137 (2015) 1004–1015.
- J.A. Hernandez, A. Bassam, J. Siqueiros, D. Juarez-Romero, Optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using neural networks inverse, Renew. Energy, 34 (2009) 1084–1091.
- D. Colorado, J.A. Hernández, W. Rivera, H. Martínez, D. Juárez, Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse, Appl. Energy, 88 (2011) 1281–1290.
- D.M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley Interscience, 1984.
- J.G. Speight, The chemistry and Technology of Petroleum, 2nd ed., MarcelDekker Inc., 1991.
- D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, 1998.
- B.C. Lippens, J.H. de Boer, Studies on pore systems in catalysts: V. The t method, J. Catal., 4 (1965) 319–323.
- K. Nakai, J. Sonoda, S. Kondo, I. Abe, The analysis of surface and pores of activated carbons by the adsorption of various gases, Pure Appl. Chem., 65 (1993) 2181–2187.
- G. Horváth, K. Kawazoe, Method for the calculation of effective pore size distribution in molecular sieve carbon, J. Chem. Eng. Jpn., 16 (1983) 470–475.
- B. Singha, N. Bar, S.D. Das, The use of artificial neural networks (ANN) for modeling of adsorption of Cr(VI) ions, Desal. Wat. Treat., 3 (2014) 415–425.
- A. Kumar, S. Kumar, D.V. Gupta, Adsorption of phenol and 4-nitro phenol on granular activated carbon in basal salt medium: equilibrium and kinetics, J. Hazard. Mater., 147 (2007)155–166.
- S. Haykin, Neural Networks, 2nd ed., Prentice Hall, 1999.
- H. Demuth, M. Beale, Neural Network Toolbox for Use with MATLAB, User’s Guide, version 4, The MathWorks, 2014.
- A. Bassam, R.A. Conde-Gutierrez, J. Castillo, G. Laredo, Direct neural network modelling for separation of linear and branched paraffins by adsorption process for gasoline octane number improvement, Fuel, 124 (2014) 158–167.
- M. Abatal, M.T. Olguin, Comparative adsorption behavior between phenol and p-nithophenol by Na- and HDTMA-clinoptilolite-rich tuff, Environ. Earth Sci., 69 (2013) 2691–2698.
- Y. Hamzaoui, J.A. Hernández, S. Silva-Martínez, A. Bassam,A. Álvarez, C. Lizama-Bahena, Optimal performance of COD removal during aqueous treatment of alazine and gesaprim commercial herbicides by direct and inverse neural network, Desalination, 277 (2011) 325–337.
- A. Bassam, I. Salgado-Tránsito, I. Oller, E. Santoyo, E.A. Jiménez, J.A. Hernandez, Optimal performance assessment for a photo-Fenton degradation pilot plant driven by solar energy using artificial neural networks, Int. J. Energy Res., 36 (2012) 1314–1324.
- R. Mohammadi, H. Eskandarloo, M. Mohammadi, Application of artificial neural network (ANN) for modelling of dyes decolorization by Sn/Zn-TiO2 nanoparticles, Desal. Wat. Treat., 7 (2015) 1922–1933.
- D. Gnanasangeetha, D. SaralaThambavani, Modelling of As3+ adsorption from aqueous solution using Azadirachta indica by artificial neural network, Desal. Wat. Treat., 7 (2015) 1839–1854.
- M.T. Hagan, M. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Netw., 5 (1994) 989–993.
- P. Isasi Viñuela, I. Galván León, Redes Neuronales Artificiales: un Enfoque Práctico, Pearson Prentice Hall, 2003.
- I. Dimopoulos, P. Bourret, S. Lek, Use of some sensitivity criteria for choosing networks with good generalization ability, Neural Process. Lett., 2 (1995) 1–4.
- J.A. Hernández, D. Colorado, O. Cortés-Aburto, Y. El Hamzaoui, V. Velazquez, B. Alonso, Inverse neural network for optimal performance in polygeneration systems, Appl. Therm. Eng., 50 (2013) 1399–1406.
- J.A. Nelder, R.A. Mead, Simplex method for function minimization, Comput. J., 7 (1965) 308–313.