References

  1. E. Morgenroth, T. Sherden , M.C.M.V. Loosdrecht , J.J. Heijnen, P.A. Wilderer, Aerobic granular sludge in a sequencing batch reactor, Water Res., 31 (1997) 3191–3194.
  2. S.F. Yang, Y. Liu, J.H.Tay, A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater, J. Biotechnol., 106 (2003) 77–86.
  3. S.S. Adav, D.J. Lee, J.Y. Lai, Potential cause of aerobic granular sludge breakdown at high organic loading rates, Appl. Microbiol. Biotechnol., 85 (2010) 1601–1610.
  4. K.Y. Show, D.J. Lee, J.H. Tay, Aerobic granulation: Advances and challenges, Appl. Biochem. Biotechnol., 167 (2012) 1622–1640.
  5. C.K. Agnieszka, W.B. Irena, S. Marcin, S. Lech, Conversions and biomass morphology in a long-term operated SBR with aerobic granular sludge, Desal. Water Treat., 51 (2013) 2261–2268.
  6. E. Suja, Y.V. Nancharaiah, T.V.K. Mohan, V.P. Venugopalan, Denitrification accelerates granular sludge formation in sequencing batch reactors, Bioresour. Technol., 196 (2015) 28–34.
  7. M. Pronk, M.K.de Kreuk, B.de Bruin, P. Kamminga, R. Kleerebezem, M.C. van Loosdrecht, Full scale performance of the aerobic granular sludge process for sewage treatment, Water Res., 84 (2015) 207–217.
  8. G.K.K. Reddy, Y.V. Nancharaiah, V.P. Venugopalan, Aerobic granular sludge mediated biodegradation of an organophosphorous ester, dibutyl phosphite, FEMS Microbiol. Lett., 359 (2015) 110–115.
  9. Y.V. Nancharaiah, G.K.K. Reddy, T.V. K Mohan, V.P. Venugopalan, Biodegradation of tributyl phosphate, an organophosphate triester, by aerobic granular biofilms, J. Hazard. Mater., 283 (2015) 705–711.
  10. Q.S. Liu , J.H. Tay, Y. Liu, Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor, Environ. Technol., 24 (2003) 1235–1243.
  11. Y.M. Zheng, H.Q.Yu, S.J. Liu, X.Z. Liu, Formation and instability of aerobic granules under high organic loading conditions, Chemosphere, 63 (2006) 1791–1800.
  12. J.H. Tay, S. Pan, Y.X. He, S.T.L. Tay, Effect of Organic Loading Rate on Aerobic Granulation I: Reactor Performance, J. Environ. Eng., 130 (2004) 1094–1101.
  13. A.J. Li, X.Y. Li, H.Q. Yu, Effect of the food-to-microorganism(F/M) ratio on the formation and size of aerobic sludge granules, Process Biochem., 46 (2011) 2269–2276.
  14. B.Y. Moy, J.H. Tay, S.K.Toh, High organic loading influences the physical characteristics of aerobic sludge granules, Lett.Appl. Microbiol., 34 (2002) 407–412.
  15. M.K.D. Kreuk, J.J. Heijnen, M.C.M.V. Loosdrecht, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90 (2005) 761–7699.
  16. B.X. Thanh, C. Visvanathan, R.B. Aim, Characterization of aerobic granular sludge at various organic loading rates, Process Biochem., 44 (2009) 242–245.
  17. M.K. De Kreuk, M.C.M. van Loosdrecht, Selection of slow growing organisms as a means for improving aerobic granular sludge stability, Water Sci.Technol., 49 (2004) 9–17.
  18. Y.M. Lin, Y. Liu, J.H. Tay, Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors, Appl. Microbiol. Biotechnol., 62 (2003) 430–435.
  19. D.C. Peng, B. Nicolas, P.D. Jean, M. Rene, Aerobic granular sludge-a case report, Water Res., 33 (1999) 890–893.
  20. B.M. Wilen, P. Balmer, The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs, Water Res., 33 (1999) 391–400.
  21. K.Z. Su, H.Q. Yu, Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processingwastewater, Environ. Sci. Technol., 39 (2005) 2818–2827.
  22. L. Bei, Z.Y. Chang, H.P.Wen, Y.K. Jia, Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor, Bioresour. Technol., 182 (2015) 314–322.
  23. C.Y.Wu, Y.Z. Peng, S.Y. Wang, Y. Ma. Enhanced biological phosphorus removal by granular sludge:From macro- to microscale, Water Res., 44 (2010) 807–814.
  24. A.T. Mielczarek, H.T.T. Nguyen, J.L. Nielsen, P.K. Nielsen, Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants, Water Res., 47 (2013) 1529–1544.
  25. J.S. Cech, P. Hartman, Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal system, Water Res., 27 (1993) 1219–1225.
  26. C.M. Lopez-Vazquez, O. Adrian, C.M. Hooijmans, B. Damir, H.J. Gijzen, Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature, Water Res., 43 (2009) 450–462.
  27. W.T. Liu, K. Nakamura, T. Matsuo, T. Mino, Internal energy-based competition between polyphosphate-and glycogen-accumulating bacteria in biological phosphorusremoval reactors-effect of P/C feeding ratio, Water Res., 31 (1997) 1430–1438.