References

  1. A.P. Annachhatre, S.H. Gheewala, Biodegradation of chlorinated phenolic compounds, Biotechnol. Adv., 14 (1996) 35–56.
  2. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  3. M. Hartmann, S. Kullmann, H. Keller, Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials, J. Mater. Chem., 20 (2010) 9002–9017.
  4. N. Remya, J.-G. Lin, Current status of microwave application in wastewater treatment—A review, Chem. Eng. J., 166 (2011) 797–813.
  5. N. Muhd Julkapli, S. Bagheri, S. Bee Abd Hamid, Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes, Sci. World J., 2014 (2014) 692307.
  6. F.J. Rivas, S.T. Kolaczkowski, F.J. Beltran, D.B. McLurgh, Hydrogen peroxide promoted wet air oxidation of phenol: influence of operating conditions and homogeneous metal catalysts, J. Chem. Technol. Biotechnol., 74 (1999) 390–398.
  7. W. Kujawski, A. Warszawski, W. Ratajczak, T. Porębski, W. Capała, I. Ostrowska, Removal of phenol from wastewater by different separation techniques, Desalination, 163 (2004) 287–296.
  8. K. Fajerwerg, H. Debellefontaine, Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst, Appl. Catal. B: environ., 10 (1996) L229–L235.
  9. S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, Structure and reactivity of framework and extraframework iron in fe-silicalite as investigated by spectroscopic and physicochemical methods, J. Catalysis, 158 (1996) 486–501.
  10. R. Joyner, M. Stockenhuber, Preparation, characterization, and performance of Fe−ZSM-5 catalysts, J. Phys. Chem. B, 103 (1999) 5963–5976.
  11. M. Handa, Y. Lee, M. Shibusawa, M. Tokumura, Y. Kawase, Removal of VOCs in waste gas by the photo-Fenton reaction: effects of dosage of Fenton reagents on degradation of toluene gas in a bubble column, J. Chem. Technol. Biotechnol., 88 (2013) 88–97.
  12. P.J. Smeets, J.S. Woertink, B.F. Sels, E.I. Solomon, R.A. Schoonheydt, Transition-Metal ions in zeolites: coordination and activation of oxygen, Inorg. Chem., 49 (2010) 3573–3583.
  13. S. Narayanan, A. Sultana, K. Krishna, P. Mériaudeau, C. Naccache, Synthesis of ZSM-5 type zeolites with and without template and evaluation of physicochemical properties and aniline alkylation activity, Catalysis Lett., 34 (1995) 129–138.
  14. A. Aziz, K. Kim, Investigation of tertiary butyl alcohol as template for the synthesis of ZSM-5 zeolite, J. Porous Mater., 22 (2015) 1401–1406.
  15. J. Wang, H. Xia, X. Ju, Z. Feng, F. Fan, C. Li, Influence of extra-framework Al on the structure of the active iron sites in Fe/ZSM-35, J. Catalysis, 300 (2013) 251–259.
  16. P. Boroń, L. Chmielarz, J. Gurgul, K. Łątka, B. Gil, B. Marszałek, S. Dzwigaj, Influence of iron state and acidity of zeolites on the catalytic activity of FeHBEA, FeHZSM-5 and FeHMOR in SCR of NO with NH3 and N2O decomposition, Microporous Mesoporous Mater., 203 (2015) 73–85.
  17. R. Szostak, V. Nair, T.L. Thomas, Incorporation and stability of iron in molecular-sieve structures. Ferrisilicate analogues of zeolite ZSM-5, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condensed Phases, 83 (1987) 487–494.
  18. K.P. Dey, S. Ghosh, M.K. Naskar, Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source, Ceramics Int., 39 (2013) 2153–2157.
  19. M. Rauscher, K. Kesore, R. Mönnig, W. Schwieger, A. Tißler, T. Turek, Preparation of a highly active Fe-ZSM-5 catalyst through solid-state ion exchange for the catalytic decomposition of N2O, Appl. Catalysis A: general, 184 (1999) 249–256.
  20. G. Ovejero, J.L. Sotelo, F. Martínez, J.A. Melero, L. Gordo, Wet Peroxide oxidation of phenolic solutions over different iron-containing zeolitic materials, Indust. Eng. Chem. Res., 40 (2001) 3921–3928.