References

  1. J.-Q. Jiang, Advances in the development and application of ferrate(VI) for water and wastewater treatment, J. Chem. Technol. Biotechnol., 89 (2014) 165–177.
  2. J.Q. Jiang, Research progress in the use of ferrate(VI) for the environmental remediation, J. Hazard. Mater., 146 (2007) 617–623.
  3. C. Li, X.Z. Li, N. Graham, A study of the preparation and reactivity of potassium ferrate, Chemosphere, 61 (2005) 537–543.
  4. J. Jiang, B. Lloyd, Progress in the development and use of ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment, Water Res., 36 (2002) 1397–1408.
  5. S.K. Rhee, D.E. Fennell, M.M. Häggblom, L.J. Kerkhof, Detection by PCR of reductive dehalogenase motifs in a sulfidogenic 2-bromophenol-degrading consortium enriched from estuarine sediment, FEMS Microbiol. Ecol., 43 (2003) 317–324.
  6. B. Uhnáková, A. Petříčková, D. Biedermann, L. Homolka, V. Vejvoda, P. Bednář, et al., Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor, Chemosphere, 76 (2009) 826–832.
  7. W. Vetter, D. Janussen, Halogenated natural products in five species of antarctic sponges: compounds with POP-like properties?, Environ. Sci. Technol., 39 (2005) 3889–3895.
  8. A. Dell’Erba, D. Falsanisi, L. Liberti, M. Notarnicola, D. Santoro, Disinfection by-products formation during wastewater disinfection with peracetic acid, Desalination, 215 (2007) 177–186.
  9. N.K. Sahoo, K. Pakshirajan, P.K. Ghosh, Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6 in batch shake flasks and in a continuously operated packed bed reactor, Biodegradation, 25 (2014) 265–276.
  10. I. Levy, G. Ward, Y. Hadar, O. Shoseyov, C.G. Dosoretz, Oxidation of 4-bromophenol by the recombinant fused protein cellulose-binding domain-horseradish peroxidase immobilized on cellulose, Biotechnol. Bioeng., 82 (2003) 223–231.
  11. E. Lipczynska-Kochany, Direct photolysis of 4-bromophenol and 3-bromophenol as studied by a flash photolysis/HPLC technique, Chemosphere, 24 (1992) 911–918.
  12. D.A. White, G.S. Franklin, A preliminary investigation into the use of sodium ferrate in water treatment, Environ. Technol., 19 (1998) 1157–1161.
  13. W. Jiang, L. Chen, S.R. Batchu, P.R. Gardinali, L. Jasa, B. Marsalek, et al., Oxidation of microcystin-LR by ferrate (VI): kinetics, degradation pathways, and toxicity assessments, Environ. Sci. Technol., 48 (2014), 12164–12172.
  14. Y. Lee, J. Yoon, U. Von Gunten, Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)), Environ. Sci. Technol., 39 (2005) 8978–8984.
  15. Y. Lee, M. Cho, J.Y. Kim, J. Yoon, Chemistry of ferrate (Fe (VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10 (2004) 161–171.
  16. V.K. Sharma, Potassium ferrate(VI): An environmentally friendly oxidant, Adv. Environ. Res., 6 (2002) 143–156.
  17. G.W. Thompson, L.T. Ockerman, J.M. Schreyer, Preparation and purification of potassium ferrate. VI, J. Am. Chem. Soc., 73 (1951) 1379–1381.
  18. V.K. Sharma, Oxidation of inorganic compounds by ferrate (VI) and ferrate(V): One-electron and two-electron transfer steps, Environ. Sci. Technol., 44 (2010) 5148–5152.
  19. W.F. Wüst, R. Köber, O. Schlicker, A. Dahmke, Combined zero- and first-order kinetic model of the degradation of tce and cis-DCE with commercial iron, Environ. Sci. Technol., 33 (1999) 4304–4309.
  20. V.K. Sharma, Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism, Coord. Chem. Rev., 257 (2013) 495–510.
  21. B. Yang, G.G. Ying, L.J. Zhang, L.J. Zhou, S. Liu, Y.X. Fang,Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles, Water Res., 45 (2011) 2261–2269.
  22. B. Yang, G.-G. Ying, Z.-F. Chen, J.-L. Zhao, F.-Q. Peng, X.-W. Chen, Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A, Water Res., 62 (2014) 211–219.
  23. N. Graham, C.C. Jiang, X.Z. Li, J.Q. Jiang, J. Ma, The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate, Chemosphere, 56 (2004) 949–956.
  24. W.F. Wagner, J.R. Gump, E.N. Hart, Factors affecting stability of aqueous potassium ferrate(VI) solutions, Anal. Chem., 24 (1952) 1497–1498.
  25. K. Svanks, Oxidation of ammonia in water by ferrates (VI) and (IV), US DOI project report A-031-OHIO (1976), pp. 16–31.
  26. Z. Mácová, K. Bouzek, J. Híveš, V.K. Sharma, R.J. Terryn, J.C. Baum, Research progress in the electrochemical synthesis of ferrate(VI), Electrochim. Acta., 54 (2009) 2673–2683.
  27. H.Y. Jeong, H. Kim, K. F. Hayes, Reductive dichlorination pathways of tetrachloroethylene and trichloroethylene and subsequent transformation of their dechlorination products by Mackinawite (FeS) in the presence of metals, Environ. Sci. Technol., 41 (2007) 7736–7743.
  28. A.L. Roberts, Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe (0) particles, Environ. Sci. Technol., 34 (2000) 1794–1805.
  29. H. Huang, D. Sommerfeld, B.C. Dunn, E.M. Eyring, C.R. Lloyd, Ferrate (VI) oxidation of aqueous phenol: kinetics and mechanism, J. Phys. Chem., 105 (2001) 3536–3541.