References

  1. Global Water Intelligence, IDA desalination yearbook 2015-2016, Media Analytics Ltd., Oxford, September 2015, pp.1–10.
  2. K.C. Ng, K. Thu, M.W. Shahzada, W. Chun, Progress of adsorption cycle and its hybrids with conventional multi-effect desalination processes, J. Water Reuse Desal., 6 (2014) 44–56.
  3. M.W. Shahzad, K. Thu, K.C. Ng, C. Wongee, Recent development in thermally activated desalination methods: achieving an energy efficiency less than 2.5 kWhelec/m3, Desal. Water Treat., 57 (2016) 7396–7405.
  4. A.S. Hanafi, G.M. Mostafa, A. Fathy, A. Waheed, Thermo-economic analysis of combined cycle MED-TVC desalination system, Energy Procedia, 75 (2015) 1005–1020.
  5. K.C. Ng, K. Thu, S.J. Oh, L. Ang, M.W. Shahzad, A.B. Ismail, Recent developments in thermally-driven seawater desalination: energy efficiency improvement by hybridization of the MED and AD cycles, Desalination, 356 (2015) 255–270.
  6. M.W. Shahzada, K.C. Ng, K. Thu, B.B. Saha, W.G. Chun, Multi effect desalination and adsorption desalination (MEDAD): a hybrid desalination method, Appl. Therm. Eng., 72 (2014) 289–297.
  7. Y. Ghalavanda, M.S. Hatamipour, A. Rahimi, A review on energy consumption of desalination processes, Desal. Water Treat., 54 (2015) 1526–1541.
  8. M.W. Shahzad, K. Thu, Y.D. Kim, K.C. Ng, An experimental investigation on MEDAD hybrid desalination cycle, Appl. Energy, 148 (2015) 273–281.
  9. B.B. Saha, I.I. El-Sharkawy, M.W. Shahzad, K. Thu, L. Ang, K.C. Ng, Fundamental and application aspects of adsorption cooling and desalination, Appl. Therm. Eng., 97 (2016) 68–76.
  10. M.W. Shahzad, K.C. Ng, K. Thu, Future sustainable desalination using waste heat: kudos to thermodynamic synergy, Environ. Sci. Water Res. Technol., 2 (2016) 206–212.
  11. R.K. Kamali, A. Abbassi, S.A. SadoughVanini, A simulation model and parametric study of MED–TVC process, Desalination, 235 (2009) 340–351.
  12. M.A. Sharaf, A.S. Nafey, L. Garcia-Rodriguez, Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes, Energy, 36 (2011) 2753–2764.
  13. D.F. Zhao, J.L. Xue, S. Li, H. Sun, Q.D. Zhang, Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater, Desalination, 273 (2011) 292–298.
  14. I.J. Esfahani, A, Ataei, K.S. Vidya, T. Oh, J.H. Park, C.K. Yoo, Modeling and genetic algorithm-based multi-objective optimization of the MED-TVC desalination system, Desalination, 292 (2012) 87–104.
  15. F.N. Alasfour, M.A. Darwish, A.O. Bin Amer, Thermal analysis of ME–TVC+MEE desalination systems, Desalination, 174 (2005) 39–61.
  16. H. Raach, J. Mitrovic, Simulation of heat and mass transfer in a multi-effect distillation plant for seawater desalination, Desalination, 204 (2007) 416–422.
  17. N.H. Aly, M.A. Marwan, Dynamic response of multi-effect evaporators, Desalination, 114 (1997) 189–196.
  18. D. Kumar, V. Kumar, V.P. Singh, Modeling and dynamic simulation of mixed feed multi-effect evaporators in paper industry, Appl. Math. Model., 37 (2013) 384–397.
  19. A.DL. Calle, J. Bonilla, L. Roca, P. Palenzuela, Dynamic modeling and performance of the first cell of a multi-effect distillation plant, Appl. Math. Model., 70 (2014) 410–420.
  20. C.H. Qi, H.J. Feng, Q.C. Lv, Y.L. Xing, N. Li, Performance study of a pilot-scale low-temperature multi-effect desalination plant, Appl. Energy, 135 (2014) 415–422.
  21. S. Mussati, P. Aguirre, N. Scenna, Dual-purpose desalination plants. Part I. Optimal design, Desalination, 153 (2003) 179–184.
  22. S. Mussati, P. Aguirre, N. Scenna, Dual-purpose desalination plants. Part II. Optimal configuration, Desalination, 153 (2003) 185–189.
  23. H.T. El-Dessouky and H.M. Ettouney, Fundamentals of salt water desalination, Elsevier Science B.V., 2002