References
- K.K. Barnes, D.W. Kolpin, E.T. Furlong, S.D. Zaugg, M.T. Meyer, L.B. Barber, A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States –I) Groundwater, Sci. Total Environ., 402 (2008) 192–200.
- D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999–2000: a national reconnaissance, Environ. Sci. Technol., 36 (2002) 1202–1211.
- M.J. Focazio, D.W. Kolpin, K.K. Barnes, E.T. Furlong, M.T. Meyer, S.D. Zaugg, B. Barber, M.E. Thurman, A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States – II) Untreated drinking water sources, Sci. Total Environ., 402 (2008) 201–216.
- S.J. Duranceau, J.S. Taylor, L.A. Mulford, SOC removal in a membrane softening process, J. AAWWA, 84:1 (1992) 68–78.
- P. Xu, J.E. Drewes, C. Bellona, G. Amy, T.-U. Kim, M. Adam, T. Heberer, Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications, Water Environ. Res., 77 (2005) 40–48.
- C. Bellona, J.E. Drewes, Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilotscale study, Water Res., 41 (2007) 3948–3958.
- J. Radjenovic, M. Petrovic, F. Ventura, D. Barcelo, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water Res., 42 (2008) 3601–3610.
- V. Yangali-Quintanilla, S.K. Maeng, T. Fujioka, M. Kennedy, Z. Li, G. Amy, Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse, Desal. Wat. Treat., 34 (2011) 50–56.
- C. Bellona, J. Drewes, P. Xu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review, Water Res., 38 (2004) 3795–2809.
- A.M. Comerton, R.C. Andrews, D.M. Bagley, The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration, Water Res., 43 (2009) 613–622.
- V. Yangali-Quintanilla, A. Sadmani, M. McConville, M. Kennedy, G. Amy, Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes, Water Res., 43 (2009) 2349–2362.
- Y.-L. Lin, C.-H. Lee, Elucidating the rejection mechanisms of PPCPs by nanofiltration and reverse osmosis membranes, Ind. Eng. Chem. Res., 53 (2014) 6798–6806.
- J. Lin, C.Y. Tang, C. Huang, Y.P. Tang, W. Ye, J. Li, J. Shen, R. Van de Broeck, J. Van Impe, A. Volodin, C. Van Haesendonck, A. Sotto, P. Luis, B. Van der Bruggen, A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes, J. Membr. Sci., 501 (2016) 1–14.
- J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvishmanesh, P. Luis, A. Sotto, B. Van der Bruggen, Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes, J. Membr. Sci., 477 (2015) 183–193.
- J. Lin, C.Y. Tang, W. Ye, S.-P. Sun, S.H. Hamdan, A. Volodin, C. Van Haesendonck, A. Sotto, P. Luis, B. Van der Bruggen, Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment, J. Membr. Sci., 493 (2015) 690–702.
- R. Schlogl, Membrane permeate in system far from equilibrium, Ber Bunsenges. Phys. Chem., 70 (1996) 400–414.
- W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predicted purposes – use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91–105.
- D. Vezzani, S. Bandini, Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes, Desalination, 149 (2002) 477–483.
- A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranesreview: recent advances and future prospects, Desalination, 356 (2015) 226–254.
- T. Chaabane, S. Taha, M. Taleb Ahmed, R. Maachi, G. Dorange, Coupled model of film theory and the Nernst-Planck equationin nanofiltration, Desalination, 206 (2007) 424–432.
- S. Bandini, D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
- X.-m. Wang, B. Li, T. Zhang, X.-y. Li, Performance of nanofiltration membrane in rejecting trace organic compounds: experiment and model prediction, Desalination, 370 (2015) 7–16.
- F.-x. Kong, H.-w. Yang, X.-m. Wang, Y.F. Xie, Assessment of the hindered transport model in predicting the rejection of trace organic compounds by nanofiltration, J. Membr. Sci., 498 (2016) 57–66.
- Y. Zhao, J.S. Taylor, Modeling membrane performance over time, J. AWWA, 96 (2004) 90–97.
- Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, J. Membr. Sci., 263 (2005) 38–46.
- L.-Y. Hung, S.J. Lue, J.-H. You, Mass-transfer modeling of reverse-osmosis performance on 0.5–2% salty water, Desalination, 265 (2011) 67–73.
- A.R.D. Verliefde, E.R. Cornelissen, S.G.J. Heijman, J.Q.J.C. Verberk, G.L. Amy, B. Van der Bruggen, J.C. van Dijk, Constructionand validation of a full-scale model for rejection of organic micropollutants by NF membranes, J. Membr. Sci., 339 (2009) 10–20.
- A.M. Hidalgo, G. Leon, M. Gomez, M.D. Murcia, D.S. Barbosa, P. Blanco, Application of the solution-diffusion model for the removal of atrazine using a nanofiltration membrane, Desal. Wat. Treat., 51 (2012) 2244–2252.
- A.M. Hidalgo, G. Leon, M. Gomez, M.D. Murcia, E. Gomez, J.L. Gomez, Modeling of aniline removal by reverse osmosis using different membranes, Chem. Eng. Technol., 34 (2011) 1753–1759.
- J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
- A.M.F. Shaaban, A.I. Hafez, M.A. Abdel-Fatah, N.M. Abdel-Monem, M.H. Mahmoud, Process engineering optimization of nanofiltration unit for the treatment of textile plant effluent in view of solution diffusion model, Egypt. J. Pet., 25 (2016) 79–90.
- J. Wang, D.S. Dlamini, A.K. Kishra, M.T.M. Pendergast, M.C.Y. Wong, B.B. Mamba, V. Freger, A.R.D. Verliefde, E.M.V. Hoek, A critical review of transport through osmotic membranes, J. Membr. Sci., 454 (2014) 516–537.
- American Water Works Association (AWWA), Manual of Water Supply Practices – M46: Reverse Osmosis and Nanofiltration, 2nd ed., American Water Works Association, Colorado, 2007.
- Z.V.P. Murthy, S.K. Gupta, Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model, Desalination, 109 (1997) 39–49.
- A.R.D. Verliefde, E.R. Cornelissen, S.G.J. Heijman, J.Q.J.C. Verberk, G.L. Amy, B. Van der Bruggen, J.C. van Dijk, Construction and validation of a full-scale model for the rejection of organic micropollutants by NF membranes, J. Membr. Sci., 339 (2009) 10–20.
- C.R. Wilke, P. Chang, Correlations of diffusion coefficients in dilute solutions, AlChE J., 1 (1955) 264–270.
- T.K. Sherwood, P.L.T. Brian, R.E. Fisher, Desalination by reverse osmosis, Ind. Eng. Chem. Fundam., 6 (1967) 2–12.
- W.H. Linton, T.K. Sherwood, Mass transfer from solids shapes to water in streamline and turbulent flow, Chem. Eng. Prog., 46 (1950) 258–264.
- S. Lee, G. Amy, J. Cho, Applicability of Sherwood correlations for natural organic matter (NOM) transport in nanofiltration (NF) membranes, J. Membr. Sci., 240 (2004) 49–65.
- S. Chellam, J.S. Taylor, Simplified analysis of contaminant rejection during ground- and surface water nanofiltration under the information collection rule, Water Res., 35 (2001) 2460–2474.
- L.D. Nghiem, A.I. Schafer, M. Elimelech, Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms, Environ. Sci. Technol., 38 (2004) 1888–1896.
- C. Bellona, D. Heil, C. Yu, P. Fu, J.E. Drewes, The pros and cons of using nanofiltration in lieu of reverse osmosis for indirect potable reuse applications, Sep. Purif. Technol., 85 (2012) 69–76.
- R.J. Wilder, S.J. Duranceau, S. Jeffery, D. Brown, A. Arrington, Contaminants of Emerging Concern: Occurrence in Shallow Groundwater and Removal by Nanofiltration, Proc. American Membrane Technology Association Conference, San Antonio, TX, 2016.
- J. Oppenheimer, A. Eaton, M. Badruzzaman, A.W. Haghani, J.G. Jacangelo, Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions, Water Res., 45 (2011) 4019–4027.
- A. Bodalo, G. Leon, A.M. Hidalgo, M. Gomez, M.D. Murcia, P. Blanco, Atrazine removal from aqueous solutions by nanofiltration, Desal. Wat. Treat., 13 (2010) 143–148.
- Y. Zhang, B. Van der Bruggen, G.X. Chen, L. Braeken, C. Vandecasteele, Removal of pesticides by nanofiltration: effect of the water matrix, Sep. Purif. Technol., 38 (2004) 163–172.
- K. Kimura, S. Toshima, G. Amy, Y. Watanabe, Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes, J. Membr. Sci., 245 (2004) 71–78.
- A.M. Comerton, R.C. Andrews, D.M. Bagley, C. Hao, The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties, J. Membr. Sci., 313 (2008) 323–335.
- N. Garcia-Vaquero, E. Lee, J. Castaneda, J. Cho, J.A. Lopez- Ramirez, Comparison of drinking water pollutant removal using a nanofiltration pilot plant powered by renewable energy and a conventional treatment facility, Desalination, 347 (2014) 94–102.
- V. Yangali-Quintanilla, S.K. Maeng, T. Fujioka, M. Kennedy, G. Amy, Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse, J. Membr. Sci., 362 (2010) 334–345.
- A. Shahmansouri, C. Bellona, Application of quantitative structure-property relationships (QSPRs) to predict the rejection of organic solutes by nanofiltration, Sep. Purif. Technol., 118 (2013) 627–638.