References

  1. K.K. Barnes, D.W. Kolpin, E.T. Furlong, S.D. Zaugg, M.T. Meyer, L.B. Barber, A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States –I) Groundwater, Sci. Total Environ., 402 (2008) 192–200.
  2. D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999–2000: a national reconnaissance, Environ. Sci. Technol., 36 (2002) 1202–1211.
  3. M.J. Focazio, D.W. Kolpin, K.K. Barnes, E.T. Furlong, M.T. Meyer, S.D. Zaugg, B. Barber, M.E. Thurman, A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States – II) Untreated drinking water sources, Sci. Total Environ., 402 (2008) 201–216.
  4. S.J. Duranceau, J.S. Taylor, L.A. Mulford, SOC removal in a membrane softening process, J. AAWWA, 84:1 (1992) 68–78.
  5. P. Xu, J.E. Drewes, C. Bellona, G. Amy, T.-U. Kim, M. Adam, T. Heberer, Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications, Water Environ. Res., 77 (2005) 40–48.
  6. C. Bellona, J.E. Drewes, Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilotscale study, Water Res., 41 (2007) 3948–3958.
  7. J. Radjenovic, M. Petrovic, F. Ventura, D. Barcelo, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water Res., 42 (2008) 3601–3610.
  8. V. Yangali-Quintanilla, S.K. Maeng, T. Fujioka, M. Kennedy, Z. Li, G. Amy, Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse, Desal. Wat. Treat., 34 (2011) 50–56.
  9. C. Bellona, J. Drewes, P. Xu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review, Water Res., 38 (2004) 3795–2809.
  10. A.M. Comerton, R.C. Andrews, D.M. Bagley, The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration, Water Res., 43 (2009) 613–622.
  11. V. Yangali-Quintanilla, A. Sadmani, M. McConville, M. Kennedy, G. Amy, Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes, Water Res., 43 (2009) 2349–2362.
  12. Y.-L. Lin, C.-H. Lee, Elucidating the rejection mechanisms of PPCPs by nanofiltration and reverse osmosis membranes, Ind. Eng. Chem. Res., 53 (2014) 6798–6806.
  13. J. Lin, C.Y. Tang, C. Huang, Y.P. Tang, W. Ye, J. Li, J. Shen, R. Van de Broeck, J. Van Impe, A. Volodin, C. Van Haesendonck, A. Sotto, P. Luis, B. Van der Bruggen, A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes, J. Membr. Sci., 501 (2016) 1–14.
  14. J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvishmanesh, P. Luis, A. Sotto, B. Van der Bruggen, Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes, J. Membr. Sci., 477 (2015) 183–193.
  15. J. Lin, C.Y. Tang, W. Ye, S.-P. Sun, S.H. Hamdan, A. Volodin, C. Van Haesendonck, A. Sotto, P. Luis, B. Van der Bruggen, Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment, J. Membr. Sci., 493 (2015) 690–702.
  16. R. Schlogl, Membrane permeate in system far from equilibrium, Ber Bunsenges. Phys. Chem., 70 (1996) 400–414.
  17. W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predicted purposes – use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91–105.
  18. D. Vezzani, S. Bandini, Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes, Desalination, 149 (2002) 477–483.
  19. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranesreview: recent advances and future prospects, Desalination, 356 (2015) 226–254.
  20. T. Chaabane, S. Taha, M. Taleb Ahmed, R. Maachi, G. Dorange, Coupled model of film theory and the Nernst-Planck equationin nanofiltration, Desalination, 206 (2007) 424–432.
  21. S. Bandini, D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
  22. X.-m. Wang, B. Li, T. Zhang, X.-y. Li, Performance of nanofiltration membrane in rejecting trace organic compounds: experiment and model prediction, Desalination, 370 (2015) 7–16.
  23. F.-x. Kong, H.-w. Yang, X.-m. Wang, Y.F. Xie, Assessment of the hindered transport model in predicting the rejection of trace organic compounds by nanofiltration, J. Membr. Sci., 498 (2016) 57–66.
  24. Y. Zhao, J.S. Taylor, Modeling membrane performance over time, J. AWWA, 96 (2004) 90–97.
  25. Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, J. Membr. Sci., 263 (2005) 38–46.
  26. L.-Y. Hung, S.J. Lue, J.-H. You, Mass-transfer modeling of reverse-osmosis performance on 0.5–2% salty water, Desalination, 265 (2011) 67–73.
  27. A.R.D. Verliefde, E.R. Cornelissen, S.G.J. Heijman, J.Q.J.C. Verberk, G.L. Amy, B. Van der Bruggen, J.C. van Dijk, Constructionand validation of a full-scale model for rejection of organic micropollutants by NF membranes, J. Membr. Sci., 339 (2009) 10–20.
  28. A.M. Hidalgo, G. Leon, M. Gomez, M.D. Murcia, D.S. Barbosa, P. Blanco, Application of the solution-diffusion model for the removal of atrazine using a nanofiltration membrane, Desal. Wat. Treat., 51 (2012) 2244–2252.
  29. A.M. Hidalgo, G. Leon, M. Gomez, M.D. Murcia, E. Gomez, J.L. Gomez, Modeling of aniline removal by reverse osmosis using different membranes, Chem. Eng. Technol., 34 (2011) 1753–1759.
  30. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
  31. A.M.F. Shaaban, A.I. Hafez, M.A. Abdel-Fatah, N.M. Abdel-Monem, M.H. Mahmoud, Process engineering optimization of nanofiltration unit for the treatment of textile plant effluent in view of solution diffusion model, Egypt. J. Pet., 25 (2016) 79–90.
  32. J. Wang, D.S. Dlamini, A.K. Kishra, M.T.M. Pendergast, M.C.Y. Wong, B.B. Mamba, V. Freger, A.R.D. Verliefde, E.M.V. Hoek, A critical review of transport through osmotic membranes, J. Membr. Sci., 454 (2014) 516–537.
  33. American Water Works Association (AWWA), Manual of Water Supply Practices – M46: Reverse Osmosis and Nanofiltration, 2nd ed., American Water Works Association, Colorado, 2007.
  34. Z.V.P. Murthy, S.K. Gupta, Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model, Desalination, 109 (1997) 39–49.
  35. A.R.D. Verliefde, E.R. Cornelissen, S.G.J. Heijman, J.Q.J.C. Verberk, G.L. Amy, B. Van der Bruggen, J.C. van Dijk, Construction and validation of a full-scale model for the rejection of organic micropollutants by NF membranes, J. Membr. Sci., 339 (2009) 10–20.
  36. C.R. Wilke, P. Chang, Correlations of diffusion coefficients in dilute solutions, AlChE J., 1 (1955) 264–270.
  37. T.K. Sherwood, P.L.T. Brian, R.E. Fisher, Desalination by reverse osmosis, Ind. Eng. Chem. Fundam., 6 (1967) 2–12.
  38. W.H. Linton, T.K. Sherwood, Mass transfer from solids shapes to water in streamline and turbulent flow, Chem. Eng. Prog., 46 (1950) 258–264.
  39. S. Lee, G. Amy, J. Cho, Applicability of Sherwood correlations for natural organic matter (NOM) transport in nanofiltration (NF) membranes, J. Membr. Sci., 240 (2004) 49–65.
  40. S. Chellam, J.S. Taylor, Simplified analysis of contaminant rejection during ground- and surface water nanofiltration under the information collection rule, Water Res., 35 (2001) 2460–2474.
  41. L.D. Nghiem, A.I. Schafer, M. Elimelech, Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms, Environ. Sci. Technol., 38 (2004) 1888–1896.
  42. C. Bellona, D. Heil, C. Yu, P. Fu, J.E. Drewes, The pros and cons of using nanofiltration in lieu of reverse osmosis for indirect potable reuse applications, Sep. Purif. Technol., 85 (2012) 69–76.
  43. R.J. Wilder, S.J. Duranceau, S. Jeffery, D. Brown, A. Arrington, Contaminants of Emerging Concern: Occurrence in Shallow Groundwater and Removal by Nanofiltration, Proc. American Membrane Technology Association Conference, San Antonio, TX, 2016.
  44. J. Oppenheimer, A. Eaton, M. Badruzzaman, A.W. Haghani, J.G. Jacangelo, Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions, Water Res., 45 (2011) 4019–4027.
  45. A. Bodalo, G. Leon, A.M. Hidalgo, M. Gomez, M.D. Murcia, P. Blanco, Atrazine removal from aqueous solutions by nanofiltration, Desal. Wat. Treat., 13 (2010) 143–148.
  46. Y. Zhang, B. Van der Bruggen, G.X. Chen, L. Braeken, C. Vandecasteele, Removal of pesticides by nanofiltration: effect of the water matrix, Sep. Purif. Technol., 38 (2004) 163–172.
  47. K. Kimura, S. Toshima, G. Amy, Y. Watanabe, Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes, J. Membr. Sci., 245 (2004) 71–78.
  48. A.M. Comerton, R.C. Andrews, D.M. Bagley, C. Hao, The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties, J. Membr. Sci., 313 (2008) 323–335.
  49. N. Garcia-Vaquero, E. Lee, J. Castaneda, J. Cho, J.A. Lopez- Ramirez, Comparison of drinking water pollutant removal using a nanofiltration pilot plant powered by renewable energy and a conventional treatment facility, Desalination, 347 (2014) 94–102.
  50. V. Yangali-Quintanilla, S.K. Maeng, T. Fujioka, M. Kennedy, G. Amy, Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse, J. Membr. Sci., 362 (2010) 334–345.
  51. A. Shahmansouri, C. Bellona, Application of quantitative structure-property relationships (QSPRs) to predict the rejection of organic solutes by nanofiltration, Sep. Purif. Technol., 118 (2013) 627–638.