References
- B. Liu, D.A. Reckhow, Y. Li, A two-site chlorine decay model for the combined effects of pH, water distribution temperature and in-home heating profiles using differential evolution, Water Res., 53 (2014) 47–57.
- B. Warton, A. Heitz, C. Joll, R. Kagi, A new method for calculation of the chlorine demand of natural and treated waters, Water Res., 40 (2006) 2877–2884.
- P. Charisiadis, S.S. Andra, K.C. Makris, C.A. Christophi, D. Skarlatos, V. Vamvakousis, S. Kargaki, E.G. Stephanou, Spatial and seasonal variability of tap water disinfection by-products within distribution pipe networks, Sci. Total Environ., 506–507 (2015) 26–35.
- S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny, D.M. Demarini, Occurrence, genotoxicity and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research, Mutat. Res., 636 (2007) 178–207.
- M.J. Rodriguez, J. S´Erodes, Laboratory-scale chlorination to estimate the levels of halogenated DBPs in full-scale distribution systems, Environ. Monit. Assess., 110 (2005) 323–340.
- S. Chowdhury, P. Champagne, P.J. McLellan, Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review, Sci. Total Environ., 407 (2009) 4189–4206.
- J. Grellier, L. Rushton, D.J. Briggs and M.J. Nieuwenhuijsen, Assessing the human health impacts of exposure to disinfection by-products — A critical review of concepts and methods, Environ Int., 78 (2015) 61–81.
- WIHC, Turkish Legislation of Water Intended for Human Consumption, 2013.
- WHO (World Health Organization), Guidelines for Drinking Water Quality, 4th ed., 2011, 564 p.
- A.O. Al-Jasser, Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect, Water Res., 41 (2007) 387–396.
- Z. Ohar, A. Ostfeld, Optimal design and operation of booster chlorination stations layout in water distribution systems, Water Res., 58 (2014) 209–220.
- L.A. Rossman, R.M. Clark, W.M. Grayman, Modeling chlorine residuals in drinking-water distribution systems, J. Environ. Eng-ASCE, 120 (1994) 803–820.
- J. Muranho, A. Ferreira, J. Sousa, A. Gomesand, A. Sá Marques, Technical performance evaluation of water distribution networks based on EPANET, Procedia Eng., 70 (2014) 1201–1210.
- A.M. Georgescu and S.C. Georgescu, Chlorine concentration decay in the water distribution system of a town with 50000 inhabitants, U.P.B. Sci. Bull., Series D., 74 (1) (2012) 103–114.
- J. Stillman, Y. Lee, E. Sinha, H. Piao, D. Hartman, C. Bush, chlorine bulk decay coefficients to calibrate the gcww all-pipes distribution system model, world environmental and water resources congress, American Society of Civil Engineers, Rhode Island, United States, 2010, pp. 4393–4404.
- J.R. Newbold, Comparison and Simulation of a Water Distribution Network in EPANET and a New Generic Graph Trace Analysis Based Model, MSc Thesis, 2009, Blacksburg, VA, 67.
- T. Koppel and A.Vassiljev, Use of modelling error dynamics for the calibration of water distribution systems, Adv. Eng. Softw., 45 (2012) 188–196.
- L. Monteiroa, D. Figueiredoa, S. Diasc, R. Freitas, D. Covas, J. Menaia, S.T. Coelho, Modeling of chlorine decay in drinking water supply systems using EPANET MSX, 12th International Conference on Computing and Control for the Water Industry, CCWI 2013, Procedia Eng., 70 (2014) 1192–1200.
- N.B. Hallam, J.R. West, C.F. Forster, J.C. Powell, I. Spencer, The decay of chlorine associated with the pipe wall in water distribution systems, Water Res., 36 (14) (2002) 3479–3488.
- M. Blokker, J. Vreeburga, V. Speight, Residual chlorine in the extremities of the drinking water distribution system: the influence of stochastic water demands, Procedia Eng., 70 (2014) 172–180.
- H. Kim, S. Kim, J. Koob, Modelling chlorine decay in a pilot scale water distribution system subjected to transient, Procedia Eng., 119 (2015) 370–378.
- I.E. Karadirek, S. Kara, A. Muhammetoglu, H. Muhammetoglu, S. Soyupak, Management of chlorine dosing rates in urban water distribution networks using online continuous monitoring and modeling, Urban Water J., 2014, DOI:10.1080/15730 62X.2014.992916.
- J. P. Cooper, Development of a chlorine decay and total trihalomethane formation modeling protocol using initial distribution system evaluation data, PhD thesis, 2009, Ohio, USA, 160.
- J.M. Arevalo 2007, Modeling free chlorine and chloramine decay in a pilot distribution system, PhD Thesis, Florida, USA, 164 p.
- L.I. Xin, G.A. Da-ming, Q.I. Jing-yao, M. Ukita, Z.H.A.O. Hongbin, Modeling of residual chlorine in water distribution system, J. Environ. Sci., 15 (1) (2003) 136–144.
- B. Kowalska, D. Kowalski, A. Musz, Chlorine decay in water distribution systems, Environ. Prot. Eng., 32(2) (2006) 5–16.
- L.E. Johnson, Geographic Information Systems in Water Resources Engineering, CRC Press, 2008, 316.
- L.K. Wang and C.T. Yang, Modern Water Resources Engineering, Springer Science & Business Media, 2014, 886
- V. Kanakoudis and K. Gonelas, Properly allocating the urban waters meters’ readings to the nodes of a water pipe network simulation model in a developing water utility, Desal. Water Treat., 54(8) (2015) 2190–2203.
- V. Kanakoudis and K. Gonelas, Accurate water demand spatial allocation for water networks modeling using a new approach, Urban Water J., 12(5) (2015) 362–279.
- ASAT “ASAT Water Quality Reports” Available at: http://www.permoakdeniz.com/pdf/asat_haziran_2011.pdf (Accessed: 08/06/2015).
- T. Akdeniz, Optimisation of number of booster stations considered by cost and quality constraints in drinking water networks, PhD Thesis 2016 (in progress).
- L. Rossman, USEPA EPANET Users Manual, Office of Research and Development, Drinking Water Division, Ohio, 2000, 200 p.