References

  1. S. Cheng, Heavy metal pollution in China: origin, pattern and control, Environ. Sci. Pollut. Res., 10 (2003) 192–198.
  2. D. Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal, V.K. Gupta, The use of low-cost adsorbent (canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies, Colloids Interf. Sci. Comm., 7 (2015) 16–19.
  3. D. Naghipour, H. Gharibi, K. Taghavi, J. Jaafari, Influence of EDTA and NTA on heavy metal extraction from sandy-loam contaminated soils, J. Environ. Chem. Eng., 4 (2016) 3512–3518.
  4. V.K. Gupta, C. Jain, I. Ali, M. Sharma, V. Saini, Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste, Water Res., 37 (2003) 4038–4044.
  5. M. Hunsom, K. Pruksathorn, S. Damronglerd, H. Vergnes, P. Duverneuil, Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction, Water Res., 39 (2005) 610–616.
  6. S. Agarwal, I. Tyagi, V.K. Gupta, M. Dehghani, J. Jaafari, D. Balarak, M. Asif, Rapid removal of noxious nickel (II) using novel γ-alumina nanoparticles and multiwalled carbon nanotubes: Kinetic and isotherm studies, J. Mol. Liquids, 224 (2016) 618–623.
  7. J.L. Parks, L. McNeill, M. Frey, A.D. Eaton, A. Haghani, L. Ramirez, M. Edwards, Determination of total chromium in environmental water samples, Water Res., 38 (2004) 2827–2838.
  8. H. Kamani, M. Hoseini, M. Seyedsalehi, Y. Mahdavi, J. Jaafari, G.H. Safari, Concentration and characterization of airborne particles in Tehran’s subway system, Environ. Sci. Pollut. Res., (2014) 1–10.
  9. A.H. Mahvi, F. Gholami, S. Nazmara, Cadmium biosorption from wastewater by Ulmus leaves and their ash, Eur. J. Sci. Res., 23 (2008) 197–203.
  10. A. Maleki, A.H. Mahvi, M.A. Zazouli, H. Izanloo, A.H. Barati, Aqueous cadmium removal by adsorption on barley hull and barley hull ash, Asian J. Chem., 23 (2011) 1373–1376.
  11. E. Bazrafshan, A.H. Mahvi, M.A. Zazouli, Removal of zinc and copper from aqueous solutions by electrocoagulation technology using iron electrodes, Asian J. Chem., 23 (2011) 5506–5510.
  12. A.R. Asgari, F. Vaezi, S. Nasseri, O. Dördelmann, A.H. Mahvi, E.D. Fard, Removal of hexavalent chromium from drinking water by granular ferric hydroxide, Iran. J. Environ. Health Sci. Eng., 5 (2008) 277–282.
  13. R.A. Dianati-Tilaki, A.H. Mahvi, M. Shariat, S. Nasseri, Study of cadmium removal from environmental water by biofilm covered granular activated carbon, Iran. J. Public Health, 33 (2004) 43–52.
  14. A. Maleki, A.H. Mahvi, R. Ebrahimi, Y. Zandsalimi, Study of photochemical and sonochemical processes efficiency for degradation of dyes in aqueous solution, Korean J. Chem. Eng., 27 (2010) 1805–1810
  15. A.H. Mahvi, S.J.A.-d. Ebrahimi, A. Mesdaghinia, H. Gharibi, M.H. Sowlat, Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation–electroflotation (ECEO– EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent, J. Hazard. Mater., 192 (2011) 1267–1274.
  16. J. Geets, K. Vanbroekhoven, B. Borremans, J. Vangronsveld, L. Diels, D. van der Lelie, Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology, Environ. Sci. Pollut. Res., 13 (2006) 362–378.
  17. J. Nouri, A. Mahvi, E. Bazrafshan, Application of electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminum electrodes, Int. J. Environ. Res., 4 (2010) 201–208.
  18. L. Rafati, A. Mahvi, A. Asgari, S. Hosseini, Removal of chromium (VI) from aqueous solutions using Lewatit FO36 nano ion exchange resin, Int. J. Environ. Sci. Technol., 7 (2010) 147–156.
  19. E. Bazrafshan, A.H. Mahvi, S. Naseri, A.R. Mesdaghinia, Performance evaluation of electrocoagulation process for removal of chromium (VI) from synthetic chromium solutions using iron and aluminum electrodes, Turk. J. Eng. Environ. Sci., 32 (2008) 59–66.
  20. D. Bhagawan, S. Poodari, T. Pothuraju, D. Srinivasulu, G. Shankaraiah, M.Y. Rani, V. Himabindu, S. Vidyavathi, Effect of operational parameters on heavy metal removal by electrocoagulation, Environ. Sci. Pollut. Res., 21 (2014) 14166–14173.
  21. S. Sobhanardakani, H. Parvizimosaed, E. Olyaie, Heavy metals removal from wastewaters using organic solid waste—rice husk, Environ. Sci. Pollut. Res., 20 (2013) 5265–5271.
  22. P.A. Terry, W. Stone, Biosorption of cadmium and copper contaminated water by Scenedesmus abundans, Chemosphere, 47 (2002) 249–255.
  23. D. Naghipour, K. Taghavi, J. Jaafari, Y. Mahdavi, M. Ghanbari Ghozikali, R. Ameri, A. Jamshidi, A. Hossein Mahvi, Statistical modeling and optimization of the phosphorus biosorption by modified Lemna minor from aqueous solution using response surface methodology (RSM), Desal. Water Treat., 57 (2016) 19431–19442.
  24. A. Esposito, F. Pagnanelli, A. Lodi, C. Solisio, F. Veglio, Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations, Hydrometallurgy, 60 (2001) 129–141.
  25. B. Prelot, I. Ayed, F. Marchandeau, J. Zajac, On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution, Environ. Sci. Pollut. Res., 21 (2014) 9334–9343.
  26. A.H. Sulaymon, A.A. Mohammed, T.J. Al-Musawi, Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae, Environ. Sci. Pollut. Res., 20 (2013) 3011–3023.
  27. T. Wang, H. Sun, Biosorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis, Environ. Sci. Pollut. Res., 20 (2013) 7450–7463.
  28. E.V. Soares, H.M. Soares, Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review, Environ. Sci. Pollut. Res., 19 (2012) 1066–1083.
  29. J. Jaafari, A. Mesdaghinia, R. Nabizadeh, M. Hoseini, A.H. Mahvi, Influence of upflow velocity on performance and biofilm characteristics of Anaerobic Fluidized Bed Reactor (AFBR) in treating high-strength wastewater, J. Environ. Health Sci. Eng., 12 (2014) 139.
  30. J. Jafari, A. Mesdaghinia, R. Nabizadeh, M. Farrokhi, A.H. Mahvi, Investigation of anaerobic fluidized bed reactor/aerobic moving bed bio reactor (AFBR/MMBR) system for treatment of currant wastewater, Iranian J. Public Health, 42 (2013) 860–867.
  31. A. Bhattacharya, A. Gupta, Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater, Environ. Sci. Pollut. Res., 20 (2013) 6628–6637.
  32. B. Dhir, Potential of biological materials for removing heavy metals from wastewater, Environ. Sci. Pollut. Res., 21 (2014) 1614–1627.
  33. B.-Y. Chen, V.P. Utgikar, S.M. Harmon, H.H. Tabak, D.F. Bishop, R. Govind, Studies on biosorption of zinc (II) and copper (II) on Desulfovibrio desulfuricans, Int. Biodeter. Biodegrad., 46 (2000) 11–18.
  34. C. White, G. Gadd, Copper accumulation by sulfate-reducing bacterial biofilms, FEMS Microbiol. Lett., 183 (2000) 313–318.
  35. P. Elliott, S. Ragusa, D. Catcheside, Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage, Water Res., 32 (1998) 3724–3730.
  36. T. Håkansson, P. Suer, B. Mattiasson, B. Allard, Sulphate reducing bacteria to precipitate mercury after electrokinetic soil remediation, Int. J. Environ. Sci. Technol., 5 (2008) 267–274.
  37. T. Jong, D.L. Parry, Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs, Water Res., 37 (2003) 3379–3389.
  38. M. Jawed, V. Tare, Post-mortem examination and analysis of anaerobic filters, Bioresour. Technol., 72 (2000) 75–84.
  39. E. Sanchez, S. Montalvo, L. Travieso, X. Rodriguez, Anaerobic digestion of sewage sludge in an anaerobic fixed bed digester, Biomass Bioenergy, 9 (1995) 493–495.
  40. E. Sanchez, R. Borja, L. Travieso, M.F. Colmenarejo, A. Chica, A. Martín, Treatment of settled piggery waste by a down-flow anaerobic fixed bed reactor, J. Chem. Technol. Biotechnol., 79 (2004) 851–862.
  41. N. Deveci, C.G. Delaloglu, Sulfate decomposition by bacterial leaching, Appl. Biochem. Biotechnol., 53 (1995) 75–81.
  42. J. Zhou, Q. He, C.L. Hemme, A. Mukhopadhyay, K. Hillesland, A. Zhou, Z. He, J.D. Van Nostrand, T.C. Hazen, D.A. Stahl, How sulphate-reducing microorganisms cope with stress: lessons from systems biology, Nature Rev. Microbiol., 9 (2011) 452–466.
  43. R.K. Sani, B.M. Peyton, L.T. Brown, Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead, Appl. Environ. Microbiol., 67 (2001) 4765–4772.
  44. Y.-C. Song, B.-C. Piak, H.-S. Shin, S.-J. La, Influence of electron donor and toxic materials on the activity of sulfate reducing bacteria for the treatment of electroplating wastewater, Water Sci. Technol., 38 (1998) 187–194.
  45. P. Teekayuttasakul, A.P. Annachhatre, Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process, J. Environ. Sci. Health Part A, 43 (2008) 1424–1430.
  46. L. Fude, B. Harris, M.M. Urrutia, T.J. Beveridge, Reduction of Cr (VI) by a consortium of sulfate-reducing bacteria (SRB III), Appl. Environ. Microbiol., 60 (1994) 1525–1531.