References

  1. Y. Zhang, X.C. Wang, Y. Ge, M. Dzakpasu, Y. Zhao, J. Xiong, Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China, Ecol. Eng., 83 (2015) 268–275.
  2. K. Show, D. Lee, X. Pan, Simultaneous biological removal of nitrogen–sulfur–carbon: Recent advances and challenge, Biotechnol. Adv., 31 (2013) 409–420.
  3. J. Huang, J. Xu, X. Liu, J. Liu, L. Wang, Spatial distribution pattern analysis of groundwater nitrate nitrogen pollution in Shandong intensive farming regions of China using neural network method, Math. Comput. Model., 54 (2011) 995–1004.
  4. G.T. Frumin, and I.M. Gildeeva, Eutrophication of water bodies-A global environmental problem, Russ. J. Gen. Chem., 84 (2015) 2483–2488.
  5. I. García-Garizábal, J. Causapé, R. Abrahao, Nitrate contamination and its relationship with flood irrigation management, J. Hydrol., 442–443 (2012) 15–22.
  6. Y. Sun, and M. Nemati, Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters, Bioresour. Technol., 114 (2012) 207–216.
  7. T. Khin, and A.P. Annachhatre, Novel microbial nitrogen removal processes. Biotechnol. Adv., 22 (2004) 519–532.
  8. A. Oehmen, P.C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L.L. Blackall, M.A.M. Reis, Advances in enhanced biological phosphorus removal: From micro to macro scale, Water Res., 41 (2007) 2271–2300.
  9. J. Ahn, T. Daidou, S. Tsuneda, A. Hirata, Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay, Water Res., 36 (2002) 403–412.
  10. P.S. Barker, P.L. Dold, Denitrification behaviour in biological excess phosphorus removal activated sludge system, Water Res., 30 (1996) 769–780.
  11. M. Henze, M.C.M. Van Loosdrecht, G.A. Ekama, D. Brdjanovic, Biological wastewater treatment: principles, modelling and design, IWA Publishing, London, 2008.
  12. J. Claros, J. Serralta, A. Seco, J. Ferrer, D. Aguado, Real-time control strategy for nitrogen removal via nitrite in a SHARON reactor using pH and ORP sensors, Process Biochem., 47 (2012) 1510–1515.
  13. A. Gali, J. Dosta, M.C.M. Van Loosdrecht, J. Mata-Alvarez, Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process, Process Biochem., 42 (2007) 715–720.
  14. D. Gao, Y. Peng, B. Li, H. Liang, Shortcut nitrification–denitrification by real-time control strategies, Bioresour. Technol., 100 (2009) 2298–2300.
  15. X. Zhang, D. Zhang, Q. He, H. Ai, P. Lu, Shortcut nitrification–denitrification in a sequencing batch reactor by controlling aeration duration based on hydrogen ion production rate online monitoring, Environm. Technol., 35 (2014) 1478–1483.
  16. J. Yang, J. Trela, M. Zubrowska-Sudol, E. Plaza, Intermittent aeration in one-stage partial nitritation/anammox process. Ecol. Eng., 75 (2015) 413–420.
  17. H. Chen, S. Liu, F. Yang, Y. Xue, T. Wang, The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal, Bioresour. Technol., 100 (2009) 1548–1554.
  18. S. Philips, S. Wyffels, R. Sprengers, W. Verstraete, Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidisers enables upward motion towards more favourable conditions, Appl. Microbiol. Biotechnol., 59 (2002) 557–566.
  19. H. Li, B. Zhou, Z. Tian, Y. Song, L. Xiang, S. Wang, C. Sun, Efficient biological nitrogen removal by Johannesburg-Sulfur autotrophic denitrification from low COD/TN ratio municipal wastewater at low temperature, Environ. Earth Sci., 73 (2015) 5027–5035.
  20. D. Shu, Y. He, H. Yue, Q. Wang, Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing, Bioresour. Technol., 186 (2015) 163–172.
  21. T. Zhang, M.F. Shao, L. Ye, 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants, ISME J., 6 (2012) 1137–1147.
  22. APHA, Standard methods for the examination of water and wastewater, 21st ed., American Public Health Association, USA, 2005.
  23. J. Gao, X. Luo, G. Wu, T. Li, Y. Peng, Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment system, Appl. Microbiol. Biotechnol., 98 (2014) 3339–3354.
  24. H. Liu, W. Jiang, D. Wan, J Qu, Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water, J. Hazard. Mater., 169 (2009) 23–28.
  25. D. Wan, H. Liu, J. Qu, P. Lei, S. Xiao, Y. Hou, Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification, Bioresour. Technol., 100 (2009) 142–148.
  26. Y. Peng, and S. Ge, Enhanced nutrient removal in three type of step feeding process from municipal wastewater, Bioresour. Technol., 102 (2011) 6405–6413.
  27. G. Cao, S. Wang, Y. Peng, Z. Miao, Biological nutrient removal by applying modified four step-feed technology to treat weak wastewater, Bioresour. Technol., 128 (2013) 604–611.
  28. W. Zeng, L. Li, Y. Yang, X. Wang, Y. Peng, Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater. Enzyme. Microb. Tech., 48 (2011) 134–142.
  29. R. Naseer, S. Abualhail, X. Lu, Biological nutrient removal with limited organic matter using a novel anaerobic-anoxic/oxic multi-phaed activated sludge process, Saudi J. Biol. Sci., 20 (2013) 11–21.
  30. Y. Chen, B. Li, L. Ye, Y. Peng, The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems, Biochem. Eng. J., 93 (2015) 235–242.
  31. W. Zhou, Y. Sun, B Wu, Y. Zhang, M. Huang, T. Miyanaga, Z. Zhang, Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone, J. Environ. Sci. 23 (2011) 1761–1769.
  32. X. Xu, C. Chen, A. Wang, W. Guo, X. Zhou, D.J. Lee, N. Ren, J.S. Chang, Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: modeling and experimental validation, J. Hazard. Mater., 264 (2014) 16–24.
  33. L. Ye, and T. Zhang, Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing, Appl. Microbiol. Biotechnol., 97 (2013) 2681–2690.