References

  1. S.S. Hamdan, M.H. El-Naas, Characterization of the removal of chromium(VI) from groundwater by electrocoagulation, J. Ind. Eng. Chem., 20 (2014) 2775–2781.
  2. L. Lin, X. Xu, C. Papelis, T.Y. Cath, P. Xu, Sorption of metals and metalloids from reverse osmosis concentrate on drinking water treatment solids, Sep. Purif. Technol., 134 (2014) 37–45.
  3. S.A. Cavaco, S. Fernandes, M.M. Quina, L.M. Ferreira, Removal of chromium from electroplating industry effluents by ion exchange resins, J. Hazard. Mater., 144 (2007) 634–638.
  4. A. Gupta, C. Balomajumder, Simultaneous adsorption of Cr(VI) and phenol onto tea waste biomass from binary mixture: multicomponent adsorption, thermodynamic and kinetic study, J. Environ. Chem. Eng., 3 (2015) 785–796.
  5. A. Gladysz-Plaska, M. Majdan, S. Pikus, D. Sternik, Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA, Chem. Eng. J., 179 (2012) 140–150.
  6. I.M. Dittert, H.D.L. Brandao, F. Pina, E.A.B. Dasilva, M.A. Selene, G.U. Desouza, A.A.U. Desouza, C.M.S. Botelho, R.A.R. Boaventura, V.J.P. Vilar, Integrated reduction/oxidation reactions and sorption processes for Cr(VI) removal from aqueous solutions using Laminaria digitata macro-algae, Chem. Eng. J., 237 (2014) 443–454.
  7. I. Alkorta, C. Garbisu, Phytoremediation of organic contaminant in soils, Bioresour. Technol., 79 (2001) 273–276.
  8. A.K. Pandey, S.D. Pandey, V. Mishra, A.K. Srimal, Removal of chromium and reduction of toxicity to Microtox system from tannery effluent by the use of calcium alginate beads containing humic acid, Chemosphere, 51 (200) 329–333.
  9. A.G. Vlyssides, C.J. Israilides, Detoxification of tannery waste liquors with an electrolysis system, J. Environ. Pollut., 97 (1997) 147–152.
  10. A. Banerjee, A.K. Ghoshal, Phenol degradation performance by isolated Bacillus cereus immobilized in alginate, Int. Biodeterior. Biodegrad., 65 (201) 1052–1060.
  11. B. Dhir, S. Srivastava, Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans, Ecol. Eng., 37 (2011) 893–896.
  12. S.R. Gomez, E.M. Naranjo, I.V. Bueno, S.R. Feldman, Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis, J. Hazard. Mater., 185 (2011) 862–869.
  13. J. Augustynowicz, M. Grosicki, E.H. Fajerska, M. Lekka, Chromium( VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn, Chemosphere, 79 (2010) 1077–1083.
  14. Y. Zhao, Y. Fang, Y. Jin, J. Huang, S. Bao, T. Fu, Z. He, F. Wang, H. Zhao, Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth, Bioresour. Technol., 163 (2014) 82–91.
  15. B.S. Smolyakov, Uptake of Zn, Cu, Pb, and Cd by water hyacinth in the initial stage of water system remediation, Appl. Geochem., 27 (2012) 1214–1219.
  16. M.S. Coniglio, V.D. Busto, P.S. Gonzalez, M.I. Medina, S. Milrad, E. Agostini, Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions, Chemosphere, 72 (2008) 1035–1042.
  17. A. Malik, Environmental challenge vis a vis opportunity: the case of water hyacinth, Environ. Int., 33 (2007) 122–138.
  18. D.R. Hoagland, D.I. Arnon, The Water-Culture Method for Growing Plants without Soil, Circular, California Agricultural Experiment Station, Vol. 347, 1950, p. 32.
  19. F.R.E. Quinones, M.A. Rizzutto, N. Added, M.H. Tabacniks, A.N. Modenes, S.M. Palacio, E.A. Silva, F.L. Rossi, N. Martin, N. Szymanski, PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes, Nucl. Instrum. Methods Phys. Res., Sect. B, 267 (2009) 1153–1157.
  20. Y. Xiao-Zhang, G. Ji-Dong, L. Luan, Assimilation and physiological effects of ferrocyanide on weeping willows, Ecotoxicol. Environ. Saf., 71 (2008) 609–615.
  21. M.J. Huertas, L.P. Saez, M.D. Roldan, V.M. Luque-Almagro, M. Martinez-Luque, R. Blasco, F. Castillo, C. Moreno-Vivian, I. Garcia-Garcia, Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH, J. Hazard. Mater., 179 (2010) 72–78.
  22. J.V. Littlejohns, A.J. Daugulis, Kinetics and interactions of BTEX compounds during degradation by a bacterial consortium, Process Biochem., 43 (2008) 1068–1076.
  23. A.G. Tekerlekopoulou, M. Tsiflikiotou, L. Akritidou, A. Viennas, G. Tsiamis, S. Pavlou, K. Bourtzis, D.V. Vayenas, Modelling of biological Cr(VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems, Water Res., 47 (2013) 623–636.
  24. D.E.G. Trigueros, A.N. Modenes, A.D. Kroumov, F.R. Espinoza- Quinonesa, Modeling of the biodegradation process of BTEX compounds: kinetic parameter estimation by using Particle Swarm Global Optimizer, Process Biochem., 45 (2010) 1355–1361.
  25. A. Gupta, C. Balomajumder, Simultaneous bioremediation of Cr(VI) and phenol from single and binary solution using Bacillus sp.: multicomponent kinetic modeling, J. Environ. Chem. Eng., 3 (2015) 2180–2186.
  26. M. Golicnik, Evaluation of enzyme kinetic parameters using explicit analytic approximations to the solution of the Michaelis– Menten equation, Biochem. Eng. J., 53 (2011) 234–238.
  27. K.P. Gopinath, M.N. Kathiravan, R. Srinivasan, S. Sankaranarayanan, Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant, Bioresour. Technol., 102 (2011) 3687–3693.
  28. R.S. Juang, S.Y. Tsai, Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate, Biochem. Eng. J., 31 (2006) 133–140.
  29. T. Abuhamed, E. Bayraktar, T. Mehmetoglu, U. Mehmetoglu, Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation, Process Biochem., 39 (2004) 983–988.
  30. A. Gupta, C. Balomajumder, Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber, J. Water Process Eng., 7 (2015) 74–82.