References

  1. M. Maretto, F. Blanchi, R. Vignola, S. Canepari, M. Baric, R. Iazzoni, M. Tagliabue, M. Petrangeli Papini, Microporous and mesoporous materials for the treatment of wastewater produced by petrochemical activities, J. Clean. Prod., 77 (2014) 22–34.
  2. M. Maretto, R. Vignola, C.D. Williams, R. Bagatin, A. Latini, M. Petrangeli Papini, Adsorption of hydrocarbons from industrial wastewater onto a silica mesoporous material: structural and thermal study, Microporous Mesoporous Mater., 203 (2015) 139–250.
  3. A.R. Khan, T.A. Al-Bahri, A. Al-Haddad, Adsorption of phenol based organic pollutants on activated carbon from multi-component dilute aqueous solutions, Water Res., 31 (1997) 2102–2112.
  4. M. Zabihi, A. Haghighi Asl, A. Ahmadpour, Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell, J. Hazard. Mater., 174 (2010) 251–256.
  5. Y-M. Cho, U. Ghosh, A.J. Kennedy, A. Grossman, G. Ray, J.E. Tomaszewski, D.W. Smithenry, T.S. Bridges, R.G. Luthy, Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment., Environ. Sci. Technol., 43 (2009) 3815–3823.
  6. G. Cornelissen, M. Elmquist Kruså, G.D. Breedveld, E. Eek, A.M.P. Oen, H.P.H. Arp, C. Raymond, G. Samuelsson, J.E. Hedman, Ø. Stokland, J.S. Gunnarsson, Remediation of contaminated marine sediment using thin-layer capping with activated carbon—a field experiment in Trondheim Harbor, Norway, Environ. Sci. Technol., 45 (2011) 6110–6116.
  7. Y-M. Cho, D.W. Smithenry, U. Ghosh, A.J. Kennedy, R.N. Millward, T.S. Bridges, R.G. Luthy, Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness, Mar. Environ. Res., 64 (2007) 541–555.
  8. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 (1993) 603–605.
  9. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes- the route toward applications, Science, 297 (2002) 787–792.
  10. Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition, Appl. Phys. Lett., 73 (1998) 3845–3847.
  11. M.-M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. del Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev., 44 (2015) 250–290.
  12. A. Rinaldi, J. Zhang, J. Mizera, F. Girgsdies, N. Wang, S.B.A. Hamid, R. Schlogl, D.S. Su, Facile synthesis of carbon nanotube/ natural bentonite composites as a stable catalyst for styrene synthesis, Chem. Commun. (2008) 6528–6530. doi: 10.1039/ B815335C
  13. M.R. Maschmann, A.D. Franklin, P.B. Amama, D.N. Zakharov, E.A. Stach, T.D. Sands, T.S. Fisher, Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates, Nanotechnology, 17 (2006) 3925–3929.
  14. D.S. Su, The use of natural materials in nanocarbon synthesis, ChemSusChem, 2 (2009) 1009–1020.
  15. G. Ghasemzadeh, M. Momenpour, F. Omidi, M. Hosseini, M. Ahani, A. Barzegari, Applications of nanomaterials in water treatment and environmental remediation, Front. Environ. Sci. Eng., 8 (2014) 471–482.
  16. A. Ehsani, F. Babaei, H. Mostaanzadeh, Electrochemical and optical investigation of conductive polymer and MWCNT nanocomposite film, J. Braz. Chem. Soc., 26 (2015) 331–337.
  17. N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, Removal of heavy metals from wastewater using carbon nanotubes, Sep. Purif. Technol., 43 (2013) 311–338.
  18. X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: a review, Chem. Eng. J., 170 (2011) 395–410.
  19. J.-G. Yu, X.-H. Zhao, L.-Y. Yu, F.-P. Jiao, J.-H. Jiang, X.-Q. Chen, Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes, J. Radioanal. Nucl. Chem., 299 (2014) 1155–1163.
  20. H. Pourzamani, A.M. Samani Majd, S. Fadaei, Benzene removal by hybrid of nanotubes and magnetic nanoparticle from aqueous solution, Desal. Water Treat., 57 (2016) 19038–19049.
  21. V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: a review, Sci. Total Environ., 408 (2009) 1–13.
  22. N. Savage, M. Diallo, Nanomaterials and water purification: opportunities and challenges, J. Nanopart. Res., 7 (2005) 331–342.
  23. G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif. Technol., 58 (2007) 224–231.
  24. F. Yu, J. Ma, Y. Wu, Adsorption of toluene, ethylbenzene on multiwalled carbon nanotubes oxidized by different concentration of NaOCl, Front. Environ. Sci. Eng., 6 (2012) 320–329.
  25. B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut., 150 (2007) 5–22.
  26. S. Cosnier, R. Haddad, D. Moatsou, R.K. O’Reilly, Biofunctionalizable flexible bucky paper by combination of multi-walled carbon nanotubes and polynorbornene-pyrene – application to the bioelectrocatalytic reduction of oxygen, Carbon, 93 (2015) 713–718.
  27. Y. Lin, S. Taylor, H. Li, K.A.S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y-P. Sun, Advances toward bioapplications of carbon nanotubes, J. Mater. Chem., 14 (2004) 527–541.
  28. P. Wu, X. Chen, N. Hu, U.C. Tam, O. Blixt, A. Zettl, C.R. Bertozzi, Biocompatible carbon nanotubes generated by functionalization with glycodendrimers, Angew. Chem.-Ger. Edit., 120 (2008) 5100–5103.
  29. US EPA USEPA Office of Drinking Water Health Advisories, US Environmental Protection Agency, Reviews of Environmental Contamination and Toxicology, 106 (1988) 189–203.
  30. F. Haghseresht, G.Q. Lu, Adsorption characteristics of phenolic compounds onto coal-reject- derived adsorbents, Energy Fuels, 12 (1998) 1100–1107.
  31. D. Gozzi, A. Latini, L. Lazzarini, Experimental thermodynamics of high temperature transformations in single-walled carbon nanotube bundles, J. Am. Chem. Soc., 131 (2009) 12474–12482.
  32. A. Aygün, S. Yenisoy-Karakaş, I. Duman, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Microporous Mesoporous Mater., 66 (2003) 189–195.
  33. R. Das, S.B. Abd Hamid, M.E. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna, Multifunctional carbon nanotubes in water treatment: the present, past and future, Desalination, 354 (2014) 160–179
  34. X. Wang, Y. Liu, S. Tao, B. Xing, Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes, Carbon, 48 (2010) 3721–3728.
  35. X. Wang, S. Tao, B. Xing, Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes, Environ. Sci. Technol., 43 (2009) 6214–6219.
  36. C. Lu, C. Liu, G.P. Rao, Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon, J. Hazard. Mater., 151 (2008) 239–246.
  37. F. Piccinno, F. Gottschalk, S. Seeger, B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, J. Nanopart. Res., 14 (2012) 1–11.