References

  1. M.R. Awual, A. Jyo, Assessing of phosphorus removal by polymeric anion exchangers, Desalination, 281 (2011) 111–117.
  2. M.R. Awual, A. Jyo, T. Ihara, N. Seko, M. Tamada, K.T. Lim, Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent, Water Res., 45 (2011) 4592–4600.
  3. B.K. Biswas, K. Inoue, K.N. Ghimire, H. Harada, K. Ohto, H. Kawakita, Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium, Bioresour, Technol., 99 (2008) 8685–8690.
  4. I. Midorikawa, H. Aoki, A. Omori, T. Shimizu, Y. Kawaguchi, K. Kassai, T. Murakami, Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorbent, Water Sci. Technol., 58 (2008) 1601–1607.
  5. X. Zhu, A. Jyo, Column-mode phosphate removal by a novel highly selective adsorbent, Water Res., 39 (2005) 2301–2308.
  6. N.Y. Acelas, E. Flórez, D. López, Phosphorus recovery through struvite precipitation from wastewater: effect of the competitive ions, Desal. Water Treat., 54 (2015) 2468–2479.
  7. N.I. Chubar, V.A. Kanibolotskyy, V.V. Strelko, G.G. Gallios, V.F. Samanidou, T.O. Shaposhnikova, V.G. Milgrandt, I.Z. Zhuravlev, Adsorption of phosphate ions on novel inorganic ion exchangers, Colloids Surf. A: Physicochem. Eng. Asp., 255 (2005) 55–63.
  8. A. Genz, A. Kornmüller, M. Jekel, Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide, Water Res., 38 (2004) 3523–3530.
  9. Y. Jaffer, T.A. Clark, P. Pearce, S.A. Parsons, Potential phosphorus recovery by struvite formation, Water Res., 36 (2002) 1834–1842.
  10. A.D. Kney, D. Zhao, A pilot study on phosphate and nitrate removal from secondary wastewater effluent using a selective ion exchange process, Environ. Technol., 25 (2004) 533–542.
  11. F.E.F. Act, Florida State Legislature, Tallahassee, Florida, 1994.
  12. M.R. Awual, A. Jyo, S.A. El-Safty, M. Tamada, N. Seko, A weak-base fibrous anion exchanger effective for rapid phosphate removal from water, J. Hazard Mater., 188 (2011) 164–171.
  13. L.M. Blaney, S. Cinar, A.K. SenGupta, Hybrid anion exchanger for trace phosphate removal from water and wastewater, Water Res., 41 (2007) 1603–1613.
  14. D. Zhao, A.K. Sengupta, Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers, Water Res., 32 (1998) 1613–1625.
  15. N.Y. Acelas, B.D. Martin, D. López, B. Jefferson, Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media, Chemosphere, 119 (2015) 1353–1360.
  16. N.Y. Acelas, S.M. Mejia, F. Mondragón, E. Flórez, Density functional theory characterization of phosphate and sulfate adsorption on Fe-(hydr)oxide: reactivity, pH effect, estimation of Gibbs free energies, and topological analysis of hydrogen bonds, Comp. Theor. Chem., 1005 (2013) 16–24.
  17. A.O. Babatunde, Y.Q. Zhao, Y. Yang, P. Kearney, Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: batch and column trials using a condensed phosphate, Chem. Eng. J., 136 (2008) 108–115.
  18. K. Kuzawa, Y.-J. Jung, Y. Kiso, T. Yamada, M. Nagai, T.-G. Lee, Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent, Chemosphere, 62 (2006) 45–52.
  19. S.I. Lee, S.Y. Weon, C.W. Lee, B. Koopman, Removal of nitrogen and phosphate from wastewater by addition of bittern, Chemosphere, 51 (2003) 265–271.
  20. R.S.S. Wu, K.H. Lam, J.M.N. Lee, T.C. Lau, Removal of phosphate from water by a highly selective La(III)-chelex resin, Chemosphere, 69 (2007) 289–294.
  21. Y.S.R. Chen, J.N. Butler, W. Stumm, Kinetic study of phosphate reaction with aluminum oxide and kaolinite, Environ. Sci. Technol., 7 (1973) 327–332.
  22. S. Tanada, M. Kabayama, N. Kawasaki, T. Sakiyama, T. Nakamura, M. Araki, T. Tamura, Removal of phosphate by aluminum oxide hydroxide, J. Colloid Interface Sci., 257 (2003) 135–140.
  23. W.H. van Riemsdijk, J. Lyklema, Reaction of phosphate with gibbsite (AI(OH)3) beyond the adsorption maximum, J. Colloid Interface Sci., 76 (1980) 55–66.
  24. P.K. Dutta, A.K. Ray, V.K. Sharma, F.J. Millero, Adsorption of arsenate and arsenite on titanium dioxide suspensions, J. Colloid Interface Sci., 278 (2004) 270–275.
  25. S. Sengupta, A. Pandit, Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer, Water Res., 45 (2011) 3318–3330.
  26. T.M. Suzuki, J.O. Bomani, H. Matsunaga, T. Yokoyama, Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic, React. Funct. Polym., 43 (2000) 165–172.
  27. L. Cumbal, A.K. SenGupta, Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect, Environ. Sci. Technol., 39 (2005) 6508–6515.
  28. B.A. Manning, S.E. Fendorf, S. Goldberg, Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes, Environ. Sci. Technol., 32 (1998) 2383–2388.
  29. P. Persson, N. Nilsson, S. Sjöberg, Structure and bonding of orthophosphate ions at the iron oxide–aqueous interface, J. Colloid Interface Sci., 177 (1996) 263–275.
  30. M.I. Tejedor-Tejedor, M.A. Anderson, The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility, Langmuir, 6 (1990) 602–611.
  31. K.W. Paul, M.J. Borda, J.D. Kubicki, D.L. Sparks, Effect of dehydration on sulfate coordination and speciation at the Fe-(hydr)oxide-water interface: a molecular orbital/density functional theory and Fourier transform infrared spectroscopic investigation, Langmuir, 21 (2005) 11071–11078.
  32. K.W. Paul, J.D. Kubicki, D.L. Sparks, Quantum chemical calculations of sulfate adsorption at the Al– and Fe-(hydr)oxide-H2O interface estimation of Gibbs free energies, Environ. Sci. Technol., 40 (2006) 7717–7724.
  33. D.M. Sherman, S.R. Randall, Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy, Geochim. Cosmochim. Acta, 67 (2003) 4223–4230.
  34. G. He, M. Zhang, G. Pan, Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: thermodynamic, DFT, and EXAFS interpretations, J. Phys. Chem. C, 113 (2009) 21679–21686.
  35. J.D. Kubicki, S.E. Apitz, Molecular cluster models of aluminum oxide and aluminum hydroxide surfaces, Am. Mineral., 83 (1998) 1054–1066.
  36. K.W. Paul, J.D. Kubicki, D.L. Sparks, Sulphate adsorption at the Fe-(hydr)oxide-H2O interface: comparison of cluster and periodic slab DFT predictions, Eur. J. Soil. Sci., 58 (2007) 978–988.
  37. A.P. Scott, L. Radom, Harmonic vibrational frequencies: an evaluation of Hartree−Fock, Møller−Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors, J. Phys. Chem., 100 (1996) 16502–16513.
  38. T.A. Keith, M.J. Frisch, Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation, Modeling the Hydrogen Bond, American Chemical Society, 1994, pp. 22–35.
  39. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 09, Revision C.02, Gaussian Inc., Wallingford, CT, 2004.
  40. X. Yang, D. Wang, Z. Sun, H. Tang, Adsorption of phosphate at the aluminum (hydr)oxides-water interface: role of the surface acid-base properties, Colloids Surf. A: Physicochem. Eng. Asp., 297 (2007) 84–90.
  41. G. He, G. Pan, M. Zhang, Studies on the reaction pathway of arsenate adsorption at water–TiO2 interfaces using density functional theory, J. Colloid Interface Sci., 364 (2011) 476–481.
  42. I.C. Regelink, L. Weng, G.J. Lair, R.N.J. Comans, Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: a mechanistic modelling study, Eur. J. Soil. Sci., 66 (2015) 867–875.
  43. Y.H. Xu, A. Ohki, S. Maeda, Removal of arsenate, phosphate, and fluoride ions by aluminium‐loaded shirasu‐zeolite, Toxicol. Environ. Chem., 76 (2000) 111–124.
  44. E.W. Shin, J.S. Han, M. Jang, S.-H. Min, J.K. Park, R.M. Rowell, Phosphate adsorption on aluminum-impregnated mesoporous silicates: surface structure and behavior of adsorbents, Environ. Sci. Technol., 38 (2004) 912–917.
  45. A.C.Q. Ladeira, V.S.T. Ciminelli, H.A. Duarte, M.C.M. Alves, A.Y. Ramos, Mechanism of anion retention from EXAFS and density functional calculations: arsenic (V) adsorbed on gibbsite, Geochim. Cosmochim. Acta, 65 (2001) 1211–1217.
  46. C.V. Luengo, N.J. Castellani, R.M. Ferullo, Quantum chemical study on surface complex structures of phosphate on gibbsite, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 147 (2015) 193–199.