References
- WHO Collaborating Centre, Slow Sand Filtration for Community
Water Supply, International Reference Centre for Community
Water Supply and Sanitation, The Hague, Netherlands
(1987).
- K. Katayama-Hirayama, A. Suzuki, S. Mukaiyama, H. Kaneko,
K. Hirayama, T. Akitsu, Removal of tetrabromobisphenol A by
slow sand filtration and a high-performance UV lamp system,
Sustain. Environ. Res., 20 (2010) 221–225.
- M.K. Smith, H. Zenick, E.L. George, Reproductive toxicology
of disinfection by-products, Environ. Health Perspect., 69
(1986) 177–182.
- F. Hodin, H. Borén, A. Grimvall, S. Karlsson, Formation of
chlorophenols and related compounds in natural and technical
chlorination processes, Water Sci. Technol., 24 (1991)
403–410.
- O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes
for water treatment, Chem. Rev., 93 (1993) 671–698.
- J.R. Bolton, S.R. Cater, Homogeneous photo-degradation
of pollutants in contaminated water; an introduction, In:
R.G. Zepp, G.R. Helz, D.G. Crosby (Eds.), Aquatic and surface
photochemistry, CRC Press, Boca Raton, FL, 1994, pp. 467–690.
- E.R. Blatchley, Z. Do-Quang, M.L. Janex, J.M. Laine, Process
modelling of ultraviolet disinfection, Water Sci. Technol., 38
(1998) 63–69.
- M. Czaplicka, Review: sources and transformation of chlorophenols
in the natural environment, Sci. Total Environ., 322
(2004) 21–39.
- M. Czaplicka, Photo-degradation of chlorophenols in the
aqueous solution, J. Hazard. Mater., B134 (2006) 45–59.
- Agency for Toxic Substances and Disease Registry (ATSDR),
Comprehensive Environmental Response, Compensation, and
Liability Act (CERCLA), Priority list of hazardous substances,
(2007).
- X. Yin, W. Bian, J. Shi, 4-chlorophenol degradation by
pulsed high voltage discharge coupling internal electrolysis,
J. Hazard. Mater., 166(2–3) (2009) 1474–1479.
- W. Bian, X. Song, D. Liu, J. Zhang, X. Chen, The intermediate
products in the degradation of 4-chlorophenol by pulsed high
voltage discharge in water, J. Hazard. Mater., 192 (2011) 1330–
1339.
- Agency for Toxic Substances and Disease Registry (ATSDR),
Toxicological profile for chlorophenols, 1999.
- A.O. Olaniran, E.O. Igbinosa, Chlorophenols and other related
derivatives of environmental concern: properties, distribution
and microbial degradation processes, Chemosphere, 83 (2011)
1297–1306.
- S. Esplugas, D.M. Bila, L.G.T. Krause, M. Dezotti, Ozonation
and advanced oxidation technologies to remove endocrine disrupting
chemicals (EDCs) and pharmaceuticals and personal
care products (PPCPs) in water effluents, J. Hazard. Mater., 149
(2007) 631–642.
- I. Kim, H. Tanaka, Photodegradation characteristics of PPCPs
in water with UV treatment, Environ. Int., 35 (2009) 793–802.
- K. Katayama-Hirayama, S. Arai, T. Kobayashi, H. Matsuda,
Z. Luo, M. Tachibana, H. Kaneko, T. Akitsu, K. Hirayama,
Removal of bisphenols by slow sand filtration, Water Sci.
Technol.,
9 (2009) 263–268.
- R.B. Cain, R.F. Bilton, J.H. Darrah, The metabolism of aromatic
acids by micro-organisms, Biochem. J., 108 (1968), 797–828.
- K.A. Cook, R.B. Cain, Regulation of aromatic metabolism in the
fungi: metabolic control of 3-oxoadipate pathway in the yeast
Rhodotorula musilaginosa, J. Gen. Microbiol., 85 (1974) 37–50.
- K. Katayama-Hirayama, S. Tobita, K. Hirayama, Aromatic
degradation in yeast Rhodotorula rubra, Water Sci. Technol.,
26 (1992), 773–781.
- K. Katayama-Hirayama, S. Tobita, K. Hirayama, Biodegradation
of phenol and monochlorophenols by yeast Rhodotorula
glutinis, Water Sci. Technol., 30 (1994) 59–66.
- H.-J. Knackmuss, M. Hellwig, Utilization and cooxidation of
chlorinated phenols by Pseudomonas sp. B 13, Arch. Microbiol.,
117 (1978), 1–7.
- H.-J. Knackmuss, Degradation of halogenated and sulfonated
hydrocarbons. In: T. Leisinger, A.M. Cook, R. Hütter, J. Nüesch
(Eds.) Microbial degradation of xenobiotics and recalcitrant compounds
(FEMS Symposium; No. 12), Academic Press for the
Swiss Academy of Sciences and the Swiss Society of Microbiology
on behalf of the Federation of European Microbiological
Societies, 1981, pp. 189–221.
- J.C. Spain, D.T. Gibson, Oxidation of substituted phenols by
Pseudomonas putida Fl and Pseudomonas sp. Strain JS6, Appl.
Environ. Microbiol., 54 (1988), 1399–1404.
- T. Ledger, D.H. Pieper, B. Gonzalez, Chlorophenol hydroxylases
encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic
acid degradation, Appl. Environ. Microbiol.,
72 (2006), 2783–2792.
- J.A.D. Groening, D. Eulberg, D. Tischler, S.R. Kaschabek,
M. Schloemann, Gene redundancy of two-component (chloro)
phenolhydroxylases in Rhodococcus opacus 1CP, FEMS Microbiol.
Lett., 361 (2014), 68–75.
- The Illumination Engineering Institute of Japan (IEIJ), UVlamp,
In: Lighting Handbook, OHMSHA, Tokyo, 2006, pp. 501–504.
- NASA Goddard Earth Science Data and Information Services
Centre (GES DISC), Ozone Production and Destruction, 2015,
http://disc.sci.gsfc.nasa.gov/ozone/additional/science-focus/about-ozone/ozone_cycle.shtml, accessed 15 January 2016.
- Japan Ozone Association (JOA), Advanced oxidation processes,
In: Ozone Handbook, Japan Ozone Association, Tokyo,
2009, pp. 96–98.
- Japan Scientific Society Press (JSSP), Frontier orbital theory
and Kenichi Fukui, Chemical Review No. 38, Japan Chemical
Society, 1983.
- K. Fukui, K.T. Yonezawa, H. Shingu, A molecular orbital theory
of reactivity in aromatic hydrocarbons, J. Chem. Phys., 20
(1952) 722–725.
- K. Fukui, T. Yonezawa, C. Nagata, MO-Theoretical approach
to the mechanism of charge transfer in the process of aromatic
substitutions, J. Chem. Phys., 27 (1957) 1247–1259.