References

  1. N.P. Hankins, N. Lu, N. Hilal, Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation, Sep. Purif. Technol., 51 (2006), 48–56.
  2. Q. Liu, B.Q. Shentu, C Gu, Z.X. Weng, The initial oxidation polymerization kinetics of 2,6-dimethylphenol with a Cu-EDTA complex in water, Eur. Polym. J., 45 (2009), 1080– 1085.
  3. D. Kolodyńska, H. Hubicka, Z. Hubicki, Sorption of heavy metal ions from aqueous solutions in the presence of EDTA on monodisperse anion exchangers, Desalination, 227 (2008) 150–166.
  4. S.H. Lan, F. Ju, X.W. Wu, Treatment of wastewater containing EDTA-Cu(II) using the combined process of interior microelectrolysis and Fenton oxidation–coagulation, Sep. Purif. Technol., 89 (2012) 117–124.
  5. O. Gyliene, R. Rekertas, M. Šalkauskas, Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestica) larva shells, Water Res., 36 (2002) 4128– 4136.
  6. P.X. Wu, J.B. Zhou, X.R. Wang, Y.P. Dai, Z. Dang, N.W. Zhu, P. Li, J.H. Wu, Adsorption of Cu-EDTA complexes from aqueous solutions by polymeric Fe/Zr pillared montmorillonite: behaviors and mechanisms, Desalination, 277 (2011) 288–295.
  7. X. Yang, J.N. Wang, C. Cheng, Preparation of new spongy adsorbent for removal of EDTA-Cu(II) and EDTA-Ni(II) from water, Chin. Chem. Lett., 24 (2013) 383–385.
  8. H.B. Zhen, Q. Xu, Y.Y. Hu J.H. Cheng, Characteristic of heavy metals capturing agent dithiocarbamate (DTC) for treatment of ethylene diamine tetraacetic acid-Cu (EDTA-Cu) contaminated wastewater, Chem. Eng. J., 209 (2012) 547–557.
  9. C. Chang, Y. Ku, The adsorption and desorption characteristics of EDTA-chelated copper ion by activated carbon, Sep. Sci. Technol., 30 (1995), 899–915.
  10. M. Chikhi, F. Balask, R. Benchaabi, A. Ayat, K. Maameche, A.H. Meniai, Experimental study of coupling complexation- adsorption of Cu(II) on activated carbon, Energy Procedia, 6 (2011) 284–291.
  11. J.K. Yang, S.M. Lee, A.P. Davis, Effect of background electrolytes and pH on the adsorption of Cu(II)/EDTA onto TiO2, J. Colloid Interface Sci., 295 (2006) 14–20.
  12. F. Ju, Y.Y. Hu, J.H. Cheng, Removal of chelated Cu(II) from aqueous solution by adsorption–coprecipitation with iron hydroxides prepared from microelectrolysis process, Desalination, 274 (2011) 130–135.
  13. R. Kumar, M.A. Barakat, Y.A. Daza, H.L. Woodcock, J.N. Kuhn, EDTA functionalized silica for removal of Cu(II), Zn(II) and Ni(II) from aqueous solution. J. Colloid Interface Sci., 408 (2013) 200–205.
  14. Y.X. Zhang, X.D. Hao, F. Li, Z.P. Diao, Z.Y. Guo, J. Li, pH-dependent degradation of methylene blue via rational-designed MnO2 nanosheet-decorated diatomites, Ind. Eng. Chem. Res., 53 (2014) 6966–6977.
  15. R. Ballesteros, D.P. Quintanilla, M. Fajardo, I.D. Hierro, I. Sierra, Adsorption of heavy metals by pirymidine-derivated mesoporous hybrid material, J. Porous. Mater., 17 (2010) 417– 424.
  16. A.K. Johnson, J. Kaczor, H.M. Han, M. Kaur, G.X. Tian, L.F. Rao, Y. Qiang, A.J. Paszczynski, Highly hydrated poly(allylamine)/silica magnetic resin, J. Nanopart. Res., 13 (2011) 4881–4895.
  17. J.W. Choi, S.Y. Lee, S.H. Lee, K.B. Lee, D.J. Kim, S.W. Hong, Adsorption of phosphate by amino-functionalized and co-condensed SBA-15. Water Air Soil Pollut, 223 (2012) 2551– 2562.
  18. M. Mureseanu, V. Pârvulescu, R. Ene, N. Cioaterǎ, T.D. Pasatoiu, M. Andruh, Cu(II) complexes immobilized on functionalized mesoporous silica as catalysts for biomimetic oxidations, J. Mater. Sci., 44 (2009) 6795–6804.
  19. L.Y. Wu, H.J. Wang, H.C. Lan, H.J. Liu, J.H. Qu, Adsorption of Cu(II)-EDTA chelates on tri-amino-functionalized mesoporous silica from aqueous solution, Sep. Purif. Technol., 117 (2013) 118–123.
  20. H. Zhang, M. Xu, H.J. Wang, D. Lei, D. Qu, Y.J. Zhai, Adsorption of copper by aminopropyl functionalized mesoporous delta manganese dioxide from aqueous solution, Colloids Surf., A, 435 (2013) 78–84.
  21. R.S. Juang, C.Y. Ju, Equilibrium sorption of copper(II)-ethylenediaminetetraacetic acid chelates onto cross-linked, polyaminated chitsan beads, Ind. Eng. Chem. Res., 36 (1997) 5403–5409.
  22. W. Maketon, C.Z. Zenner, K.L. Ogden, Removal efficiency and binding mechanisms of copper and copper-EDTA complexes using polyethyleneimine, Environ. Sci. Technol., 42 (2008) 2124–2129.
  23. K.F. Hayes, C. Papelis, J.O. Leckie, Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces, J. Colloid. Interface Sci., 125 (1998), 717–726.
  24. A.S.M. Chong, X.S. Zhao, Functionalization of SBA-15 with APTES and characterization of functionalized materials, J. Phys. Chem. B, 107 (2003), 12650–12657.
  25. X.P. Dong, W.H. Shen, Y.F. Zhu, L.M. Xiong, J.L. Shi, Facile synthesis of manganese-loaded mesoporous silica materials by direct reaction between KMnO4 and an in-situ surface template, Adv. Funct. Mater., 15 (2005), 955–960.
  26. R. Han, W.H. Zou, Z.P. Zhang, J. Shi, J.J. Yang, Removal of copper( II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study, J. Hazard. Mater., 137 (2006), 384–395.
  27. J.A. Bae, S.H. Hwang, K.C. Song, J.K. Jeon, Y.S. Ko J.H. Yim, Synthesis of functionalized mesoporous materials with various organo-silanes, J. Nanosci. Nanotechnol., 10 (2010), 290–296.
  28. M.V. Lombardo, M. Videla, A. Calvo, F.G. Requejo, G.J.A.A. Soler-Illia, Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: adsorption efficiency, functional stability and reusability aspects, J. Hazard. Mater., 223–224 (2012), 53–62.