References
- M. Bevacqua, A. Carubia, A. Cipollina, A. Tamburini, M.
Tedesco, G. Micale, Performance of a RED system with ammonium
hydrogen carbonate solutions, Desal. Water Treat., 57
(2016) 23007–23018.
- Y. Kim, W.S. Walker, D.F. Lawler, Electrodialysis with spacers:
Effects of variation and correlation of boundary layer thickness,
Desalination, 274 (2011) 54–63.
- S.S. Sablani, M.F.A. Goosen, R. Al-Belushi, M. Wilf, Concentration
polarization in ultrafiltration and reverse osmosis: a
critical review, Desalination, 141 (2001) 269–289.
- A. Tamburini, A. Cipollina, S. Al-Sharif, M. Albeirrutty, L.
Gurreri, G. Micale, M. Ciofalo, Assessment of temperature
polarization in membrane distillation channels by liquid crystal
thermography, Desal. Water Treat., 55 (2015) 2747–2765.
- Y. Tanaka, Pressure distribution, hydrodynamics, mass transport
and solution leakage in an ion-exchange membrane electrodialyzer,
J. Membr. Sci., 234 (2004) 23–39.
- D.A. Vermaas, E. Guler, M. Saakes, K. Nijmeijer, Theoretical
power density from salinity gradients using reverse electrodialysis,
Energy Procedia, 20 (2012) 170–184.
- D.A. Vermaas, M. Saakes, K. Nijmeijer, Doubled power density
from salinity gradients at reduced intermembrane distance,
Environ. Sci. Technol., 45 (2011) 7089–7095.
- A. Cipollina, G. Micale, Sustainable Energy from Salinity Gradients,
section 6.6, page 209, 1st ed., Woodhead Publishing,
Amsterdam, 2016.
- R.E. Pattle, Production of elctric power by mixing fresh and
salt water in hydroelectric pile, Nature, 174 (1954) 660.
- J.W. Post, H.V.M. Hamelers, C.J.N. Buisman, Energy recovery
from controlled mixing salt and fresh water with a reverse
electrodialysis system, Environ. Sci. Technol., 42 (2008) 5785–
5790.
- J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis:
Performance of a stack with 50 cells on the mixing
of sea and river water, J. Membr. Sci., 327 (2009) 136–144.
- A. Daniilidis, D.A. Vermaas, R. Herber, K. Nijmeijer, Experimentally
obtainable energy from mixing river water, seawater
or brines with reverse electrodialysis, Renew. Energy, 64 (2014)
123–131.
- D.A. Vermaas, M. Saakes, K. Nijmeijer, Power generation using
profiled membranes in reverse electrodialysis, J. Membr. Sci.,
385–386 (2011) 234–242.
- D.A. Vermaas, M. Saakes, K. Nijmeijer, Enhanced mixing in
the diffusive boundary layer for energy generation in reverse
electrodialysis, J. Membr. Sci., 453 (2014) 312–319.
- M. Tedesco, A. Cipollina, A. Tamburini, I.D.L. Bogle, G. Micale,
A simulation tool for analysis and design of reverse electrodialysis
using concentrated brines, Chem. Eng. Res. Des., 93
(2015) 441–456.
- M. Tedesco, A. Cipollina, A. Tamburini, W. van Baak, G. Micale,
Modelling the Rreverse electrodialysis process with seawater
and concentrated brines, Desal. Water Treat., 49 (2012) 404–424.
- J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis:
A validated process model for design and optimization,
Chem. Eng. J., 166 (2011) 256–268.
- J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Electrical
power from sea and river water by reverse electrodialysis: a
first step from the laboratory to a real power plant, Environ.
Sci. Technol., 44 (2010) 9207–9212.
- L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo,
CFD prediction of concentration polarization phenomena in
spacer-filled channels for reverse electrodialysis, J. Membr.
Sci., 468 (2014) 133–148.
- J. Jagur-Grodzinski, R. Kramer, Novel process for direct conversion
of free energy of mixing into electric power, Ind. Eng.
Chem. Process Des. Dev., 25 (1986) 443–449.
- M. Tedesco, C. Scalici, D. Vaccari, A. Cipollina, A. Tamburini,
G. Micale, Performance of the first reverse electrodialysis pilot
plant for power production from saline waters and concentrated
brines, J. Membr. Sci., 500 (2016) 33–35.
- P. Długołęcki, A. Gambier, K. Nijmeijer, M. M. Wessling, Practical
potential of reverse electrodialysis as process for sustainable
energy generation, Environ. Sci. Technol., 43 (2009)
6888–6894.
- S. Pawlowski, P. Sistat, J.G. Crespo, S. Velizarov, Mass transfer
in reverse electrodialysis: Flow entrance effects and diffusion
boundary layer thickness, J. Membr. Sci., 471 (2014) 72–83.
- S. Pawlowski, J.G. Crespo, S. Velizarov, Pressure drop in
reverse electrodialysis: Experimental and modeling studies
for stacks with variable number of cell pairs, J. Membr. Sci., 462
(2014) 96–111.
- M.H. Dirkse, W.K.P. van Loon, J.W. Post, J. Veerman, J.D.
Stigter, G.P.A. Bot, Extending potential flow modelling of flatsheet
geometries as applied in membrane-based systems, J.
Membr. Sci., 325 (2008) 537–545.
- R. Ghidossi, D. Veyret, P. Moulin, Computational fluid dynamics
applied to membranes: State of the art and opportunities,
Chem. Eng. Process., 45 (2006) 437–454.
- G.A. Fimbres-Weihs, D.F. Fletcher, Review of 3D CFD modeling
of flow and mass transfer in narrow spacer-filled channels
in membrane modules, Chem. Eng. Process., 49 (2010) 759–781.
- J. Schwinge, D.E. Wiley, D.F. Fletcher, Simulation of the flow
around spacer filaments between channel walls. 1. Hydrodynamics,
Ind. Eng. Chem. Res., 41 (2002) 2977–2987.
- S.K. Karode, A. Kumar, Flow visualization through spacer
filled channels by computational fluid dynamics I. Pressure
drop and shear rate calculations for flat sheet geometry, J.
Membr. Sci., 193 (2001) 69–84.
- C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, Direct numerical
simulation of flow in spacer-filled channels: Effect of spacer
geometrical characteristics, J. Membr. Sci., 291 (2007) 53–69.
- F. Li, W. Meindersma, A.B. de Haan, T. Reith, Optimization of
commercial net spacers in spiral wound membrane modules, J.
Membr. Sci., 208 (2002) 289–302.
- S.M. Mojab, A. Pollard, J.G. Pharoah, S.B. Beale, E.S. Hanff,
Unsteady laminar to turbulent flow in a spacer-filled channel,
Flow Turbul. Combust., 92 (2014) 563–577.
- V.V. Ranade, A. Kumar, Fluid dynamics of spacer filled rectangular
and curvilinear channels, J. Membr. Sci., 271 (2006) 1–15.
- L.C. Santos, V. Geraldes, S. Velizarov, J.G. Crespo, Investigation
of flow patterns and mass transfer in membrane module channels
filled with flow-aligned spacers using computational fluid
dynamics (CFD), J. Membr. Sci., 305 (2007) 103–117.
- M. Shakaib, S.M.F. Hasani, M. Mahmood, Study on the effects
of spacer geometry in membrane feed channels using three-dimensional
computational flow modeling, J. Membr. Sci., 297
(2007) 74–89.
- D. Dendukuri, S.K. Karode, A. Kumar, Flow visualization
through spacer filled channels by computational fluid dynamics
II: Improved feed spacer designs, J. Membr. Sci., 249 (2005)
41–49.
- F. Li, W. Meindersma, A.B. de Haan, T. Reith, Novel spacers
for mass transfer enhancement in membrane separations,
J. Membr. Sci., 253 (2005) 1–12.
- P. Xie, L.C. Murdoch, D.A. Ladner, Hydrodynamics of sinusoidal
spacers for improved reverse osmosis performance,
J. Membr. Sci., 453 (2014) 92–99.
- L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo,
Flow and mass transfer in spacer-filled channels for reverse
electrodialysis: a CFD parametrical study, J. Membr. Sci., 497
(2016) 300–317.
- L. Gurreri, M. Ciofalo, A. Cipollina, A. Tamburini, W. van
Baak, G. Micale, CFD modelling of profiled-membrane channels
for reverse electrodialysis, Desal. Water Treat., 55 (2015)
3404–3423.
- A. Tamburini, G. La Barbera, A. Cipollina, M. Ciofalo,
G. Micale, CFD simulation of channels for direct and reverse
electrodialysis, Desal. Water Treat., 48 (2012) 370–389.
- A. Tamburini, G. La Barbera, A. Cipollina, G. Micale,
M. Ciofalo,
CFD prediction of scalar transport in thin channels
for reverse electrodialysis, Desal. Water Treat., 55 (2015)
3424–
3445.
- S. Pawlowski, V. Geraldes, J.G. Crespo, S. Velizarov, Computational
fluid dynamics (CFD) assisted analysis of profiled membranes
performance in reverse electrodialysis, J. Membr. Sci.,
502 (2016) 179–190.
- D.W. Green, R.H. Perry, Perry’s Chemical Engineers’ Handbook,
8th ed., McGraw-Hill, New York, 2007.
- H. Ozbek, J.A. Fair, S.L. Phillips, Viscosity of aqueous sodium
chloride solutions from 0–150°C, University of California,
Berkeley, 2010.
- V.V. Ranade, A. Kumar, Comparison of flow structures in spacer-filled flat and annular channels, Desalination, 191 (2006)
236–244.
- M. Shakaib, S.M.F. Hasani, M. Mahmood, CFD modeling for
flow and mass transfer in spacer-obstructed membrane feed
channels, J. Membr. Sci., 326 (2009) 270–284.
- L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, CFD analysis
of the fluid flow behavior in a reverse electrodialysis stack,
Desal. Water Treat., 48 (2012) 390–403.
- C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, A numerical and
experimental study of mass transfer in spacer-filled channels:
Effects of spacer geometrical characteristics and Schmidt
number, J. Membr. Sci., 326 (2009) 234–251.
- Y.L. Li, K.L. Tung, CFD simulation of fluid flow through
spacer-filled membrane module: selecting suitable cell types
for periodic boundary conditions, Desalination, 233 (2008)
351–358.
- E. Lauga, M.P. Brenner, H.A. Stone, Microfluidics: The No-Slip
Boundary
Condition, Chapter 15, in: J. Foss, C. Tropea, A. Yarin
(Eds.) Handbook of Experimental Fluid Dynamics, Springer,
New York, 2005.
- Ansys Inc., Ansys-CFX Reference Guide, Release 14.5, 2012.
- S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere
Publishing Corp., 1980.
- C.M. Rhie, W.L. Chow, Numerical study of the turbulent flow
past an airfoil with trailing edge separation, AIAA Journal, 21
(1983) 1525–1532.
- B.R. Hutchinson, G.D. Raithby, A multigrid method based
on the Additive Correction strategy, Numer. Heat Transfer, 9
(1986) 511–537.
- T.J. Barth, D.C. Jespersen, The design and application of
upwind schemes on unstructured meshes, in: 27th AIAA
Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 1989.