References

  1. M. Bevacqua, A. Carubia, A. Cipollina, A. Tamburini, M. Tedesco, G. Micale, Performance of a RED system with ammonium hydrogen carbonate solutions, Desal. Water Treat., 57 (2016) 23007–23018.
  2. Y. Kim, W.S. Walker, D.F. Lawler, Electrodialysis with spacers: Effects of variation and correlation of boundary layer thickness, Desalination, 274 (2011) 54–63.
  3. S.S. Sablani, M.F.A. Goosen, R. Al-Belushi, M. Wilf, Concentration polarization in ultrafiltration and reverse osmosis: a critical review, Desalination, 141 (2001) 269–289.
  4. A. Tamburini, A. Cipollina, S. Al-Sharif, M. Albeirrutty, L. Gurreri, G. Micale, M. Ciofalo, Assessment of temperature polarization in membrane distillation channels by liquid crystal thermography, Desal. Water Treat., 55 (2015) 2747–2765.
  5. Y. Tanaka, Pressure distribution, hydrodynamics, mass transport and solution leakage in an ion-exchange membrane electrodialyzer, J. Membr. Sci., 234 (2004) 23–39.
  6. D.A. Vermaas, E. Guler, M. Saakes, K. Nijmeijer, Theoretical power density from salinity gradients using reverse electrodialysis, Energy Procedia, 20 (2012) 170–184.
  7. D.A. Vermaas, M. Saakes, K. Nijmeijer, Doubled power density from salinity gradients at reduced intermembrane distance, Environ. Sci. Technol., 45 (2011) 7089–7095.
  8. A. Cipollina, G. Micale, Sustainable Energy from Salinity Gradients, section 6.6, page 209, 1st ed., Woodhead Publishing, Amsterdam, 2016.
  9. R.E. Pattle, Production of elctric power by mixing fresh and salt water in hydroelectric pile, Nature, 174 (1954) 660.
  10. J.W. Post, H.V.M. Hamelers, C.J.N. Buisman, Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system, Environ. Sci. Technol., 42 (2008) 5785– 5790.
  11. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci., 327 (2009) 136–144.
  12. A. Daniilidis, D.A. Vermaas, R. Herber, K. Nijmeijer, Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis, Renew. Energy, 64 (2014) 123–131.
  13. D.A. Vermaas, M. Saakes, K. Nijmeijer, Power generation using profiled membranes in reverse electrodialysis, J. Membr. Sci., 385–386 (2011) 234–242.
  14. D.A. Vermaas, M. Saakes, K. Nijmeijer, Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis, J. Membr. Sci., 453 (2014) 312–319.
  15. M. Tedesco, A. Cipollina, A. Tamburini, I.D.L. Bogle, G. Micale, A simulation tool for analysis and design of reverse electrodialysis using concentrated brines, Chem. Eng. Res. Des., 93 (2015) 441–456.
  16. M. Tedesco, A. Cipollina, A. Tamburini, W. van Baak, G. Micale, Modelling the Rreverse electrodialysis process with seawater and concentrated brines, Desal. Water Treat., 49 (2012) 404–424.
  17. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis: A validated process model for design and optimization, Chem. Eng. J., 166 (2011) 256–268.
  18. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant, Environ. Sci. Technol., 44 (2010) 9207–9212.
  19. L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo, CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis, J. Membr. Sci., 468 (2014) 133–148.
  20. J. Jagur-Grodzinski, R. Kramer, Novel process for direct conversion of free energy of mixing into electric power, Ind. Eng. Chem. Process Des. Dev., 25 (1986) 443–449.
  21. M. Tedesco, C. Scalici, D. Vaccari, A. Cipollina, A. Tamburini, G. Micale, Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines, J. Membr. Sci., 500 (2016) 33–35.
  22. P. Długołęcki, A. Gambier, K. Nijmeijer, M. M. Wessling, Practical potential of reverse electrodialysis as process for sustainable energy generation, Environ. Sci. Technol., 43 (2009) 6888–6894.
  23. S. Pawlowski, P. Sistat, J.G. Crespo, S. Velizarov, Mass transfer in reverse electrodialysis: Flow entrance effects and diffusion boundary layer thickness, J. Membr. Sci., 471 (2014) 72–83.
  24. S. Pawlowski, J.G. Crespo, S. Velizarov, Pressure drop in reverse electrodialysis: Experimental and modeling studies for stacks with variable number of cell pairs, J. Membr. Sci., 462 (2014) 96–111.
  25. M.H. Dirkse, W.K.P. van Loon, J.W. Post, J. Veerman, J.D. Stigter, G.P.A. Bot, Extending potential flow modelling of flatsheet geometries as applied in membrane-based systems, J. Membr. Sci., 325 (2008) 537–545.
  26. R. Ghidossi, D. Veyret, P. Moulin, Computational fluid dynamics applied to membranes: State of the art and opportunities, Chem. Eng. Process., 45 (2006) 437–454.
  27. G.A. Fimbres-Weihs, D.F. Fletcher, Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules, Chem. Eng. Process., 49 (2010) 759–781.
  28. J. Schwinge, D.E. Wiley, D.F. Fletcher, Simulation of the flow around spacer filaments between channel walls. 1. Hydrodynamics, Ind. Eng. Chem. Res., 41 (2002) 2977–2987.
  29. S.K. Karode, A. Kumar, Flow visualization through spacer filled channels by computational fluid dynamics I. Pressure drop and shear rate calculations for flat sheet geometry, J. Membr. Sci., 193 (2001) 69–84.
  30. C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics, J. Membr. Sci., 291 (2007) 53–69.
  31. F. Li, W. Meindersma, A.B. de Haan, T. Reith, Optimization of commercial net spacers in spiral wound membrane modules, J. Membr. Sci., 208 (2002) 289–302.
  32. S.M. Mojab, A. Pollard, J.G. Pharoah, S.B. Beale, E.S. Hanff, Unsteady laminar to turbulent flow in a spacer-filled channel, Flow Turbul. Combust., 92 (2014) 563–577.
  33. V.V. Ranade, A. Kumar, Fluid dynamics of spacer filled rectangular and curvilinear channels, J. Membr. Sci., 271 (2006) 1–15.
  34. L.C. Santos, V. Geraldes, S. Velizarov, J.G. Crespo, Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD), J. Membr. Sci., 305 (2007) 103–117.
  35. M. Shakaib, S.M.F. Hasani, M. Mahmood, Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling, J. Membr. Sci., 297 (2007) 74–89.
  36. D. Dendukuri, S.K. Karode, A. Kumar, Flow visualization through spacer filled channels by computational fluid dynamics II: Improved feed spacer designs, J. Membr. Sci., 249 (2005) 41–49.
  37. F. Li, W. Meindersma, A.B. de Haan, T. Reith, Novel spacers for mass transfer enhancement in membrane separations, J. Membr. Sci., 253 (2005) 1–12.
  38. P. Xie, L.C. Murdoch, D.A. Ladner, Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance, J. Membr. Sci., 453 (2014) 92–99.
  39. L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo, Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study, J. Membr. Sci., 497 (2016) 300–317.
  40. L. Gurreri, M. Ciofalo, A. Cipollina, A. Tamburini, W. van Baak, G. Micale, CFD modelling of profiled-membrane channels for reverse electrodialysis, Desal. Water Treat., 55 (2015) 3404–3423.
  41. A. Tamburini, G. La Barbera, A. Cipollina, M. Ciofalo, G. Micale, CFD simulation of channels for direct and reverse electrodialysis, Desal. Water Treat., 48 (2012) 370–389.
  42. A. Tamburini, G. La Barbera, A. Cipollina, G. Micale, M. Ciofalo, CFD prediction of scalar transport in thin channels for reverse electrodialysis, Desal. Water Treat., 55 (2015) 3424– 3445.
  43. S. Pawlowski, V. Geraldes, J.G. Crespo, S. Velizarov, Computational fluid dynamics (CFD) assisted analysis of profiled membranes performance in reverse electrodialysis, J. Membr. Sci., 502 (2016) 179–190.
  44. D.W. Green, R.H. Perry, Perry’s Chemical Engineers’ Handbook, 8th ed., McGraw-Hill, New York, 2007.
  45. H. Ozbek, J.A. Fair, S.L. Phillips, Viscosity of aqueous sodium chloride solutions from 0–150°C, University of California, Berkeley, 2010.
  46. V.V. Ranade, A. Kumar, Comparison of flow structures in spacer-filled flat and annular channels, Desalination, 191 (2006) 236–244.
  47. M. Shakaib, S.M.F. Hasani, M. Mahmood, CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels, J. Membr. Sci., 326 (2009) 270–284.
  48. L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, CFD analysis of the fluid flow behavior in a reverse electrodialysis stack, Desal. Water Treat., 48 (2012) 390–403.
  49. C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number, J. Membr. Sci., 326 (2009) 234–251.
  50. Y.L. Li, K.L. Tung, CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions, Desalination, 233 (2008) 351–358.
  51. E. Lauga, M.P. Brenner, H.A. Stone, Microfluidics: The No-Slip Boundary Condition, Chapter 15, in: J. Foss, C. Tropea, A. Yarin (Eds.) Handbook of Experimental Fluid Dynamics, Springer, New York, 2005.
  52. Ansys Inc., Ansys-CFX Reference Guide, Release 14.5, 2012.
  53. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., 1980.
  54. C.M. Rhie, W.L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA Journal, 21 (1983) 1525–1532.
  55. B.R. Hutchinson, G.D. Raithby, A multigrid method based on the Additive Correction strategy, Numer. Heat Transfer, 9 (1986) 511–537.
  56. T.J. Barth, D.C. Jespersen, The design and application of upwind schemes on unstructured meshes, in: 27th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 1989.