References

  1. J. Cui, L. Zhang. Metallurgical recovery of metals from electronic waste: a review, J. Hazard. Mater. 158 (2008) 228–256.
  2. F.C. Walsh. Electrochemical technology for environmentaltreatment and clean energy conversion. Pure Appl. Chem. 73(12) (2001) 1819–1837.
  3. L.J.J. Janssen, L. Koene. The role of electrochemistry and electrochemical technology in environmental protection. Chem. Eng. Jl. 85 (2002) 137–146.
  4. D. Pletcher, F.C. Walsh. Industrial Electrochemistry, 2nd ed., Chapman & Hall. London, New York. 1993
  5. J. Blaedel, J.H. Strohl. Continuous quantitative electrolysis. Anal. Chem. 36 (1964) 1245–1251.
  6. A. Tentorio, U. Casolo-Ginelli. Characterization of reticulate, three-dimensional electrodes. J. Appl. Electrochem. 8 (1978) 195–205.
  7. J. Wang, H.D. Dewald. Deposition of metals at a flow-through reticulated vitreous carbon electrode coupled with on-line monitoring of the effluent. J. Electrochem. Soc. 130(9) (1983) 1814–1816.
  8. Q. Chu, J. Lianga, J. Hao. Electrodeposition of zinc-cobalt alloys from choline chloride–ureaionic liquid. Electrochim. Acta. 115 (2014) 499–503.
  9. H. Yang, R.G. Reddy. Electrochemical deposition of zinc from zinc oxide in 2:1 urea/choline chloride ionic liquid. Electrochim. Acta. 147 (2014) 513–519.
  10. M. Lia, Z. Wang, R.G. Reddy. Cobalt electrodeposition using urea and choline chloride. Electrochim. Acta. 123 (2014) 325– 331.
  11. S. Fogarasi, F. Imre-Lucaci, P. Ilea, Á. Imre-Lucaci. The environmental assessment of two new copper recovery processes from waste printed circuit boards. J. Cleaner Prod. 54 (2013) 264–269.
  12. C. Ponce deLeon and D. Pletcher. The removal of Pb(II) from aqueous solutions using a reticulated vitreous carbon cathode cell — the influence of the electrolyte medium. Electrochim. Acta. 41(4) (1996) 533–541.
  13. D. Pletcher, I. Whyte, F.C. Walsh, J.P. Millington. Reticulated vitreous carbon cathodes for metal ion removal from process stream. Part I: Mass transport studies. J. Appl. Electrochem. 21 (1991) 659.
  14. D. Pletcher, I. Whyte, F.C. Walsh, J.P. Millington. Reticulated vitreous carbon cathodes for metal ion removal from process stream. Part II: Removal of copper (II) from acid sulphate media. J. Appl. Electrochem. 21 (1991) 667.
  15. F.C. Walsh, ed., A first course in electrochemical engineering. The Electrochemical Consultancy. Romsey, UK. 1993.
  16. D.J. Pickett, C.J. Wilson. Mass transfer in a parallel plate electrochemical cell—the effect of change of flow cross-section at the cell inlet. Electrochim. Acta. 27 (1982) 591–594.
  17. O. Levenspiel, ed., Chemical Reaction Engineering, Wiley, New York, 1972.
  18. P. Trinidad, F.C. Walsh. Hydrodynamic behaviour of the FM0-LC reactor. Electrochim. Acta. 4 (1996) 493–502.
  19. J.W. Baughn, N.A. Hoffman, N.A. Takahashi, B.E. Launder. Local heat transfer downstream of an abrupt expansion in a circular channel with constant wall heat flux. J. Heat Transfer. 106 (1984) 789–796.
  20. A.K. Runchal. Mass transfer investigation in turbulent flow downstreams of sudden enlargement of a circular pipe for very high Schmidt numbers. Int. J. Heat Mass Trans. 14 (1971) 781–792.
  21. D.J. Tagg, M.A. Patrick, A.A. Wragg. Heat and mass transfer downstream of abrupt nozzle expansions in turbulent flow. Trans. I. Chem. E57 (1979) 176–181.
  22. A. Djati, M. Brahimi, J. Legrand, B. Saidani. Entrance effect on mass transfer in a parallel plate electrochemical reactor. J. Appl. Electrochem. 31 (2001) 833–837.
  23. A. Frías-Ferrer, L. González-García, V. Sáez, C. Ponce de León, F.C. Walsh. The effects of manifold flow on mass transport in electrochemical filter-press reactors. AIChE J. 54 (2008) 811– 823.
  24. J.L.C. Santos, V. Geraldes, S. Velizarov, J.G. Crespo. Characterization of fluid dynamics and mass-transfer in an electrochemical oxidation cell by experimental and CFD studies. Chem. Ing. J. 157 (2010) 379–392.
  25. L. Vázquez, A. Alvarez-Gallegos, F.Z. Sierra, C. Ponce de León, F.C. Walsh. Simulation of velocity profiles in a laboratory electrolyser using computational fluid dynamics. Electrochim. Acta. 55 (2010) 3437–3445.
  26. L. Vázquez, A. Alvarez-Gallegos, F.Z. Sierra, C. Ponce de León, F.C. Walsh. Prediction of mass transport profiles in a laboratory filter-press electrolyser by computational fluid dynamics modeling. Electrochim. Acta. 55 (2010) 3446–3453.
  27. L. Vázquez, A. Alvarez-Gallegos, F.Z. Sierra, C. Ponce de León, F.C. Walsh. CFD evaluation of internal manifold effects on mass transport distribution in a laboratory filter-press flow cell. J. Appl. Electrochem. 43 (2013) 453–465.
  28. H.K. Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics, Pearson Prentice Hall, Essex, 2007.